Ah hah! Algorithms
Recursion and iteration
Asymptotic analysis
The repeated squaring trick

Much ado about Fibonacci numbers
Agenda

- The worst algorithm in the history of humanity
- Asymptotic notations: Big-O, Big-Omega, Theta
- An iterative solution
- A better iterative solution
- The repeated squaring trick
And the worst algorithm in the history of humanity

FIBONACCI SEQUENCE
Fibonacci sequence

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

- $F[0] = 0$
- $F[1] = 1$
Recursion – fib1()

/**
 * the most straightforward algorithm to compute F[n]
 */

unsigned long long fib1(unsigned long n) {
 if (n <= 1) return n;
 return fib1(n-1) + fib1(n-2);
}
Run time on my laptop

2.53GHz Intel Core 2 Duo, 4 GB DDR3
On large numbers

• Looks like the run time is doubled for each $n++$

• We won’t be able to compute $F[120]$ if the trend continues

• The age of the universe is 15 billion years $< 2^{60}$ sec

• The function looks … exponential
 – Is there a theoretical justification for this?
A Note on “Functions”

• Sometimes we mean a C++ function

• Sometimes we mean a mathematical function like $F[n]$

• A C++ function can be used to compute a mathematical function
 – But not always! There are un-computable functions
 – Google for “busy Beaver numbers” and the “halting problem”, for typical examples.

• What we mean should be clear from context
Guess and induct strategy

Thinking about the main body

ANALYSIS OF FIB1()
Guess and induct

• For \(n > 1 \), suppose it takes \(c \) mili-sec in \(\text{fib1}(n) \) not counting the recursive calls
• For \(n=0, 1 \), suppose it takes \(d \) mili-sec
• Let \(T[n] \) be the time \(\text{fib1}(n) \) takes
• \(T[0] = T[1] = d \)
• \(T[n] = c + T[n-1] + T[n-2] \) when \(n > 1 \)

• To estimate \(T[n] \), we can
 – Guess a formula for it
 – Prove by induction that it works
The guess

• Bottom-up iteration
 – \(T[0] = T[1] = d \)
 – \(T[2] = c + 2d \)
 – \(T[3] = 2c + 3d \)
 – \(T[4] = 4c + 5d \)
 – \(T[5] = 7c + 8d \)
 – \(T[6] = 12c + 13d \)

• Can you guess a formula for \(T[n] \)?
 – \(T[n] = (F[n+1] - 1)c + F[n+1]d \)
The Proof

• The base cases: n=0,1
• The hypothesis: suppose
 • T[m] = (F[m+1] – 1)*c + F[m+1]*d for all m < n
• The induction step:
 • T[n] = c + T[n-1] + T[n-2]
 = c + (F[n] – 1)*c + F[n]*d
 + (F[n-1] – 1)*c + F[n-1]*d
 = (F[n+1] – 1)*c + F[n]*d
How does this help?

\[F[n] = \frac{\phi^n - (-1/\phi)^n}{\sqrt{5}} \]

\[\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6 \]

The golden ratio
So, there are constants C, D such that

$$C \phi^n \leq T[n] \leq D \phi^n$$

This explains the exponential-curve we saw
- Back of the envelope time/space estimation
- Independent of whether our computer is fast
- Big-o, big-omega, theta
• Suppose \(\text{fib1()} \) runs on a computer with \(C = 10^{-9} \):

\[
10^{-9} (1.6)^{140} \geq 3.77 \cdot 10^{19} > 100 \cdot \text{age of univ.}
\]

• We need a formal way to state that \((1.6)^n \) is the “correct” measure of \(\text{fib1()’s runtime} \)

 – How fast the target computer runs shouldn’t concern us
$f, g : \mathbb{N} \rightarrow \mathbb{R}^+$

$f(n) = O(g(n)) \iff \exists \text{ constants } C, n_0 > 0$

such that $f(n) \leq Cg(n), \forall n \geq n_0$
in our case $T[n] = O(\phi^n)$
• \(f(n) = O(g(n)) \) means: for \(n \) sufficiently large, \(f(n) \) is bounded above by a constant scaling of \(g(n) \)
 – Does the “English translation” make things worse?

• An algorithm with runtime \(f(n) \) is at least as good as an algorithm with runtime \(g(n) \), asymptotically
Examples

\[n^2 = O(n^2) \]

\[n^2 = O(n^2 / 10^6) \]

\[n = O(n^2) \]
$f, g : \mathbb{N} \rightarrow \mathbb{R}^+$

$f(n) = \Omega(g(n))$ iff \exists constants $C, n_0 > 0$

such that $f(n) \geq Cg(n), \forall n \geq n_0$
Examples

\[n \log n = \Omega(n) \]

\[\frac{2^n}{10^6} = \Omega(n^{100}) \]
$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } g(n) = O(f(n))$$

We say they “have the same growth rate”

in fib1() example: $$T[n] = \Theta(\phi^n)$$
In picture
- A Linear time algorithm using vectors
- A linear time algorithm using arrays
- A linear time algorithm with constant space
An algorithm using vector

unsigned long long fib2(unsigned long n) {
 // this is one implementation option
 if (n <= 1) return n;
 vector<unsigned long long> A;
 A.push_back(0); A.push_back(1);
 for (unsigned long i=2; i<=n; i++) {
 A.push_back(A[i-1]+A[i-2]);
 }
 return A[n];
}
Data

<table>
<thead>
<tr>
<th>n</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td># seconds</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>Eats up all my CPU/RAM</td>
</tr>
</tbody>
</table>
How about an array?

unsigned long long fib2(unsigned long n) {
 if (n <= 1) return n;
 unsigned long long* A = new unsigned long long[n];
 A[0] = 0; A[1] = 1;
 for (unsigned long i=2; i<=n; i++) {
 }
 unsigned long long ret = A[n];
 delete[] A;
 return ret;
}
Data structure matters a great deal!

Some assumptions we made are false if too much space is involved: computer has to use hard-drive as memory

<table>
<thead>
<tr>
<th>n</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td># seconds</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Segmentation fault</td>
</tr>
</tbody>
</table>

2/10/2013
Dynamic programming!

```c
unsigned long long fib3(unsigned long n) {
    if (n <= 1) return n;
    unsigned long long a=0, b=1, temp;
    unsigned long i;
    for (unsigned long i=2; i<= n; i++) {
        temp = a + b; // F[i] = F[i-2] + F[i-1]
        a = b;       // a = F[i-1]
        b = temp;    // b = F[i]
    }
    return temp;
}
```

Guess how large an n we can handle this time?
The answers are incorrect because F[10^8] is greater than the largest integer representable by unsigned long long.

But that’s ok. We want to know the runtime.
AN EVEN FASTER ALGORITHM

- The repeated squaring trick
Math helps!

• We can re-formulate the problem a little:

\[
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F[n - 1] \\
F[n - 2]
\end{bmatrix}
=
\begin{bmatrix}
F[n] \\
F[n - 1]
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
=
\begin{bmatrix}
2 \\
1
\end{bmatrix}
=
\begin{bmatrix}
F[n + 1] \\
F[n]
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^n
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
1
\end{bmatrix}
=
\begin{bmatrix}
3 \\
2
\end{bmatrix}
=
\begin{bmatrix}
F[n] \\
F[n - 1]
\end{bmatrix}
\]
How to we compute A^n quickly?

- Want

$$
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^n
$$

- But can we even compute 3^n quickly?
First algorithm

unsigned long long power1(unsigned long n) {
 unsigned long i;
 unsigned long long ret=1;
 for (unsigned long i=0; i<n; i++)
 ret *= base;
 return ret;
}

When n = 10^{10} it took 44 seconds
unsigned long long power2(unsigned long n) {
 unsigned long long ret;
 if (n == 0) return 1;
 if (n % 2 == 0) {
 ret = power2(n/2);
 return ret * ret;
 } else {
 ret = power2((n-1)/2);
 return base * ret * ret;
 }
}

When n = 10^{19} it took < 1 second
Couldn’t test n = 10^{20} because that’s > sizeof(unsigned long)
Runtime analysis

• First algorithm $O(n)$

• Second algorithm $O(\log n)$

• We can apply the second algorithm to the Fibonacci problem: fib4() has the following data

<table>
<thead>
<tr>
<th>n</th>
<th>10^8</th>
<th>10^9</th>
<th>10^{10}</th>
<th>10^{19}</th>
</tr>
</thead>
<tbody>
<tr>
<td># seconds</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>