
CSE305, Spring 2023 Assignment 7 Due Fri. May 12, 11:59pm

Mini-Project: Interpreting Lines of C Code
(for teams of two, or individual)

Brief Task Statement: Write an OCaml program that completes the following workflow, given
one or more lines of simple C assignment statements (in a file):

1. Lex and parse each statement and render the resulting expression tree into an OCaml expression
datatype of the kind already seen in lectures and assignments.

2. Then translate the tree into a sequence of postfix commands in our “rudimentary stack-based
language”—this is already accomplished on Assignment 5.

3. Design OCaml objects (inside modules) to represent the system stack and external storage of
an interpreter.

4. Execute the commands, periodically showing updates to the stack and storage, the latter when
stored value(s) change.

5. At the end, output the compiled stack commands and a history of the changes to the variables.
Tracing each step of the evaluation stack is highly recommended for debugging but can be
commented out for the final product—and you may also comment out the parser trace print
code in the supplied Parser.ml. You may assign each variable an initial random value.

You are given code Swi.ml and Parser.ml for the first task. The answer key for Assignment 5 has
been modified into a file Compile.ml for the second task. One more supplied code file, PolyOps.ml,
helps solve the issue of emulating arithmetic in C that mixes integers and floats. These files are
mirrored in the OCaml section of the course webpage (four uppermost files here) and on timberlake

in the folder (not a URL) ~regan/cse305/LANGUAGES/OCAML.
The code files for you to write must have names EvalStackMMM.ml, StorageNNN.ml, and

DriverMMMNNN.ml, where MMM and NNN stand for the initials of the team members. Each of the
former two must comprise a mutable OCaml object that can be manipulated by the driver; it can
reside inside a module or class. The driver file may define its own (class or module and) object

with these objects as fields to represent the whole system, or may simply consist of top-level OCaml
functions and other code. Your code can be developed on your own machines but must be tested on
timberlake and submitted via submit cse305 there.

The larger theme of the project is that we are providing a unique semantics for the C statements.
It is unique even when the statements are “weird code” that causes differences among prominent
compilers. Essay questions and possible short code additions (“virtual” or real) explore this and
object-oriented aspects of the code design.

1 Notes and Rules and Points

The project has been simplified and scaled down in the following respects, compared to possibilities
from previous assignments and coverage:

(a) The exp data type is no longer polymorphic (in the sense of having a generic type variable ’a);
instead, numeric data is stored in string form. Similarly, there is now just a token datatype
for the command elements.

https://cse.buffalo.edu/~regan/cse305/OCAML/?C=M;O=D


(b) The exp and token datatypes are left in extensible form but are defined all-together now.
There is no duplication of pcompile and other functions, nor are there curried functions like
atostr since the representation has been fixed as string.

(c) Code for arithmetical operations on strings that can hold either int or float data is given in
the file PolyOps.ml, rather than trying to grapple with concretely polymorphic functions in
OCaml.

(d) Variable names are left as strings and their values can be looked up that way, rather than
make allocation with a binding address a design feature. Hence also, the pointer address-of &,
dereference *, and ArrayEntry features are not implemented.

(e) Tasks have been structured to minimize the need for IDE-level help and steer clear of incom-
patible library versions (4.02 on timberlake versus 4.06 versus 4.12 versus the new OCaml 5,
oh my). See tips below for averting some common “gotchas” of OCaml code.

The project has 45 individual points and 105 joint points. Followups on the next and last as-
signment (which will have some short Prolog questions) may bring the total to the vicinity of 180.
Formation of teams of 2 should be communicated by email to regan@buffalo.edu by 1pm Friday,
May 5. It is also possible to work on all the code individually. The division of labor is:

� One member is responsible for coding EvalStackMMM.ml. This object can be an enriched
version of the kind of stack shown in lecture, with extra handy stack-manipulation operations
besides push and pop. It does not need to know about the existence of the stack-language
module SL nor the token type—processing that can be left to the shared driver program.

� The other is responsible for coding StorageNNN.ml. This can be mostly a “wrapper” for the
OCaml library’s Hashtbl module, which has several handy features and is being described
in recitations and lectures. The OCaml Hashtbl reference is well-written. To even-up the
individual coding work, this file is required also to provide a method for printing the history of
changes to a variable. The changes are automatically preserved by Hashtbl (it tacks on new
values for keys rather than replace them); the method may make a clone using OCaml’s native
{< >} syntax (exemplified in the supplied Swi.ml file) and then call Hashtbl.remove until the
key is empty to record them all.

� Both may collaborate on DriverMMMNNN.ml. Of course, some collaboration will also be needed
on deciding the interface of the individual parts and how they work—including whether to
return option elements (“the safe way”) or cut out this extra layer but have to raise exceptions
in cases of “stack underflow” or nonexistent values in stored memory. As stated above, use
of a module or class and/or object in this file is optional (it may lessen the headache of
implementing accumulation parameters and other “recursive juggling”).

OCaml desires files to have the same name as a capital-letter module in the file. If there is
none, then OCaml capitalizes the name of your code file and pretends under-the-hood that your
file is a module by that name. To avoid potential issues, we require that EvalStackMMM.ml and
StorageNNN.ml have modules whose names include the initials. There are 45 individual points

for the individual part and 90 code points to each team member for the driver, plus 15 points
to each for a short essay answer, which should be in a (* ... comment ... *) at the bottom
of the driver file. Some of the points are for code “quality” and format, including having a header
comment with your name(s) and the purpose and usage of the file at the top. This assignment will
not use CSE Autograder. Doing the above individually does not by-itself carry extra credit. Possible
extra-credit options can be enquired after in the second week.

https://v2.ocaml.org/api/Hashtbl.html


2 Essay Question

Describe the architecture of your system and how the use of objects saved work both in the initial
coding and in debugging. Do the eval-stack and storage modules/object need to know any details of
the stack language commands, and could they adapt seamlessly to possible extensions in the range
of C-language commands emulated? On this latter question, you may imagine what-if the actual
code used binding addresses (say, six-digit integers) as keys in the storage lookup, so that potentially
an address could be a fetched value of a pointer variable, rather than use variable names as keys
directly? (Joint answer, 15 pts. to each team member.)

3 Coding Tips

This list will probably be added to...

1. OCaml has a “Dangling Nested Match” issue that is even thornier than its “Dangling Else”
problem. If you use a nested match, e.g. to unpack Some x versus None when a function returns
an option value, be sure to enclose the whole nested match expression inside parentheses as
(match ... with ... and ) after the last case-alternative; I line up the closing parenthesis
with the vertical bars before each case.

2. Remember that writing foo(x) does not make x associate to foo any tighter than foo x

does. The precedence of the “individual application operator” often makes it advisable to put
parentheses outside instead, i.e., (foo x). To compose functions foo and bar, you can’t write
foo bar x because you will get foo applied to bar instead. You can write foo (bar x), which
is equivalent to the usual foo(bar(x)), but note that (foo (bar x)) provides more protection
against foo being “grabbed” by code that may come before it.

3. OCaml modules use dot . but Ocaml objects use # not dot. That does bind tighter than the
application operator, so you (usually) need not enclose object field access within parentheses.

4. OCaml is like Python in needing self# to access methods of the same object. Here self is
not a reserved word; you can use whatever word you put in place of self when the object is
declared as object(self).

5. Especially when you use library module functions, take care of when they use currying versus
tuple arguments.

6. In a let-binding of the form let x = ... and y = ..., you get an error if the body of the
y part uses x. Unless the parts separated by and are truly parallel, you have to make them
sequential via let x = ... in let y = ... in ... (yes, this is a “Dangling Let”).

7. IMPHO, it is often neater to introduce a side effect bar(...) by the code idiom let =

bar(...) in ... rather than use OCaml’s semicolon sequencing feature. Using underscore
here rather than a “throwaway” variable name avoids an annoying warning about unused
variable names.

8. The hardest-to-spot bug in the answer-key code was calling the eval-stack object constructor
each time in a recursion, rather than once-only before it. This effectively zapped whatever the
previous iteration had added to the stack.

9. When in doubt, use fewer parentheses.

10. When in doubt, use more parentheses.


	Notes and Rules and Points
	Essay Question
	Coding Tips

