
CSE305 Week 11: From ADT to OOP
 
First, to finish some other points of coverage of chapters 9 and 10:
 
Example on Passed Subprograms (Sebesta, section 9.6)
 
Here's a rewrite of Sebesta's code-sketch example in section.  It reorders the functions, renames them 
according to my football pass analogy, and uses how Javascript (now) allows declaring and initializing 
in the same line of code:
 
function sub1() {

   let x = 1;

   function football() {   //code that gets passed

      alert(x);

   }

   function receiver(theBall) {

      let x = 4;

      theBall();

   }

      function launchPass() {
      let x = 3;

      receiver(football);

   }

   launchPass();

}

 
Of Sebesta's "three choices":
 

• Using the environment of the call statement that enacts the passed subprogram (called shallow 
binding) would take x = 4 in the body of receiver.

• Using the environment of the definition of the passed subprogram (called deep binding, which I 
would also call statically-scoped binding here) would go with where "football" appears in the 
textual code, so this would print x = 1.

• Using the environment of the call statement that passed the subprogram (called ad-hoc 
binding) would use the body of launchPass and thus give x = 3.

 
Only statically-scoped binding enables the compiler to determine the referent of x before any code is 
run, and thus generate the activation frame.  Sebesta points out that if function football() were 
defined within launchPass just before the statement passing it to receiver, then both deep binding 
and ad-hoc binding would give x = 3 (which could be what the code writer intended).  Sebesta then 
says that (otherwise) "ad-hoc binding has never been used---because, one might surmise, the 
environment in whcih the procedure appears as a parameter has no natural connection to the passed 

 

 



subprogram."  Maybe it helps to understand this by picturing where it would make sense to inline the 
code body "alert(x)".  It arguably doesn't make sense to execute it in launchPass because the code is 
supposed to be executed when the receiver figuratively catches the ball.  (Yet, by "eager evaluation", if 
what we passed was receiver(football()) with a function call, or in a language with an internal 
eval function, the call receiver(eval("alert(x)")), then that is where the x would be read as 
x=3.)
 
 
Implementing Dynamic Scoping (Sebesta 10.6)
 
Implementing dynamic scoping is easy in concept---to look up a non-local variable, you follow the chain 
of dynamic links (DL) rather than the chain of static links (SL).  Last week's notes included an example.  
The text observes that unlike with static scoping, the search through stack frames is an open-ended 
search, because the currently-running frame could be called from different places after different 
sequences of subprogram calls.  This "deep access" policy is more time-consuming than static scoping. 
 The text goes on to mention a shortcut called "shallow access" (I'm not bolding these names because 
they're silly and IMPHO actually misleading, so forgetaboutem) which is just the idea of keeping a 
separate record of changes in value for each named variable---which in turn is unnecessary with static 
scoping.
 
One remark looking forward is that the action of following links to do lookup at runtime is reprised in 
OOP to look up the applicable version of an overridable method in a class hierarchy, based on the 
actual type of the object a base-class variable happens to be holding.  This, too, is an open-ended 
search---and the extra time matters a lot more because virtual method calls happen more often than 
well-motivated uses of non-local variables anyway.  
 
The one program element that has to be dynamically scoped is exceptions.  This and event handling 
are the subjects of Chapter 14, but we've been covering the workings of exceptions on-the-fly.  Here's 
another example---to the effect that the dynamic lookup of an exception handler in a caller completely 
pops off and wipes out the calling frames along the way.  (Event handling does not have the call-
sequence element---an event does not invalidate the stuff in-between---so IMPHO it is best regarded as 
going hand-in-hand with OOP, as in fact was its historical genesis in Smalltalk and the other work at 
Xerox PARC.)
 
 
Example on Exceptions 
 
Here is a tweak to some Python code used for the Assignment 5 TopHat part---changes in red:
 
def decodeRating(rtg):

   return rtg if (rtg/0 > 0 and rtg != 1000) else "Unrated"

 
#rating = 3

 

 



try:

   rating = decodeRating(1000)

except ZeroDivisionError:

   print("Nan's rating is ", rating)

 
if rating > 0:

   print(rating)

 
This handles the divide-by-zero exception, but raises the error that the name rating is not defined.  
The reason is that the stack frame for decodeRating got wiped by the divide-by-zero error, and 
likewise the try: block which called it.  Not only was the assignment of a value never completed, the 
storage object for rating was wiped too.  Because Python is interpreted, it keeps the association 
between names and storage objects, not just the binding address as with statically compiled 
languages.  Thus Python reports the error as the name being absent.  
 
 
Blocks As Quasi-Frames (Sebesta 10.5)
 
In C/C++/Java/Javascript, one can create a nested scope by enclosing any sequence of statements 
inside curly braces { ... }.  This is what happens naturally for the "then" and "else" branches of an 
if-else statement---declarations inside those branches do not apply after the if-else statement 
ends for the simple reason that the branch might not be executed.  The same is true of the {...} body 
of a loop (and this is irrespective of whether the compiler permissively allows "int i" (etc.) declared in 
the loop header, which is outside the braces, to be visible after the loop).  (What's even more important 
to appreciate here is that the alternatives in the body of a match in OCaml---and in Scala too---are 
separate scopes nested in the whole construct.)
 
Much the same thing happens with the let-in construct in OCaml (which works the same as let-in-
end in standard ML, which Sebesta could have mentioned here).  The declarations in the part before in 
are visible only in the body after it.  The whole thing can see variables and functions in the enclosing 
scope.  The idea is to use convenient names in a temporary manner in the body without worrying about 
their obscuring other entities with the same name after the body exits.  We've seen this used via let 
open CE in ... with our example modules so that their shorter names do not clash.  Another common 
use is to define a recursive helper function that does the "heavy lifting" between let and in, while 
putting the ultimastely-desired simple call to it in the body after in.  
 
The text makes a point of noting that since simple blocks (here, maybe as opposed to blocks in loops) 
are one-shot deals that enter and exit in sequence, the compiler can know to re-use the memory space 
allocated to the vvariables declared in the first one for the variables of the second one, and so on.  This 
is IMPHO a minor point---maybe it was more major in the 1970s---sitting under what for me is the 
helpful point about all blocks, including those of if-then-else and loops: they can be pictured as being 
implemented with the same mechanics and nonlocal-lookup rules as stack frames.  

 

 



 
 
Pointers to Functions (Sebesta 9.7)
 
In C the native syntax for declaring a pointer p to a function A foo(B x) is
 
      A (*p)(B).  

 
The pointer name goes inside the type and the parameter name(s) are omitted.  Sebesta gives an 
example with two parameters: float (*pfun) (float, int).  Because the type syntax is clunky, 
it is standard practice to use a typedef to name and declare function pointer types:
 
      typedef float (*FI2F) (float, int);

 
Then a pointer p to any function of type float * int -> float can be declared simply as 
 
      FI2F p;

 
Either way, the function can be executed through the pointer by, e.g., (*p)(3.5, 2);   Because the 
name of a function is actually synonymous with the binding address of its object code, the syntax was 
liberalized to allow omitting the * from the type declaration and then the applications.  C# cleaned up 
the syntax a little more by having you write delegate up front, e.g.
 
      public delegate float pfun(float, int);

 
The presence of "public"---as well as my use of capital letters FI2F for my float-and-int-to-float type 
name---hints at the general drift: higher-order functions in these languages are best pictured as 
manipulating function objects, which are objects of a class that defines a method to call the function.  
The method can have a conventional name such as apply and not provide any "syntactic magic" 
beyond that.  C++ allows overloading the "parenthesis operator" so that function-object applications 
look just like function calls.  Scala does something halfway similar.  In OCaml we can have class-based 
function objects, but functions in relevant senses already are objects.
 
Pointers to functions remain important in embedded-systems and related applications (especially 
C/C++ based ones), but for the motives of this course, they too are best folded into OOP.  Likewise, 
overloading (sections 9.9 and 9.11) and generics (9.10) can be "delegated" to OOP coverage.  To 
which we now turn...
 
 
From ADTs to OOP (Sebesta chapter 11 and parts of 12, but with more history), 
 
Recall that two of the main advances in programming language design in the 1960s were Procedure 
Abstraction and Data Abstraction.  Let us speak of “level”—not of a “computation,” but of a program—

 

 



as the main units the programmer thinks about while writing it.  In assembly code, the “level” was 
individual assembly instructions; in the old FORTRAN, it was individual statements.  COBOL and 
ALGOL-60 were the first languages to offer both user-defined (record) types and user-defined 
procedures.
 
People wrote “real software” at the procedure level well into the 1980s.  Some still do.  Classic Pascal 
has no other levels—everything is in one main program.
 
Some major limitations of the procedure level:
 

1. They expose the source code of the implementation.
2. They may have “side effects,” not part of their prescribed behavior, that other parts of the 

program may come to rely on.  This makes it difficult to change the implementation.
3. (Taken together, these say that procedures do not provide information hiding.)
4. Procedures cannot “of themselves” be compiled separately.  Pascal leaves you with one big 

program to recompile on every little change.
5. As programs get large, either you get zillions of little procedures—and then it’s hard to keep tabs 

on how control flows among them—or you get individual procedures with zillions of lines, 
defeating their purpose to begin with.  Nesting of procedures (as in Pascal) helps some, but not 
much (and is impossible in C anyway).

6. Procedures do not relate directly to data—rather, data is subservient to procedures in the form of 
parameters.

 
This last may be the most important point.  The root cause of programming difficulties in these 
languages is that they did not  provide any good means of associating operations and (user-defined) 
data types.
 
The Answer to all of these problems was first the concept of a Module.  This answer was realized 
already in the 1960s, but Niklaus Wirth (in particular) passed it over to keep ISO Standard Pascal 
simple.  C header (.h) files do not really “encapsulate” data and operations—because they don’t 
provide a common (prefix) name  or a common access pattern for their members.   It was left to the 
design of Ada and Modula-2 in the late 1970’s (and nonstandard extensions to Pascal...) to bring 
modules to a wide audience.  
 
Classes in OOP languages perform the essential functions of modules---and others besides,  
Whereas, modules in languages like Ada and Modula-2 do not support inheritance or dynamic binding, 
so these languages are (well, were) called object-based, not object-oriented.  
 
A module mainly implements an abstract data type in the manner of a mathematical structure.  A 
famous reaction to the proliferation of mathematical structures in the late 1800s was Leopold 
Kronecker's statement, "God created the integers; everything else is Menschenwerk."  An example of 
such "handiwork" is the definition of a field as a structure  where  is a set called F =  S, 0, 1, +, *, /( ) S

the domain of the field,  has at least two members abstractly called  and , and the field has S 0 1

 

 



operations called , , and  that satisfy certain laws.  The revelation was that mathematics is not just + * /

about numerical "stuff" but also the operations and laws that go with the stuff.  The concepts of 
members and methods capture two-thirds of that triad, but IMPHO the representation of logical laws 
has lagged.  (We will at the end view the Prolog language as an attempt to remedy this lack that fell 
short of its 1980s "5th Generation" hype.)
 
Modules
 
A module is a collection of declarations, typically of procedures and one or more types, all wrapped 
inside a “namespace” [this is vital, too!].  The main purposes are:
 

1. To associate operations to the type(s) explicitly.
2. To partition the program text into high-level “chunks.”
3. To control which features of this chunk are visible outside the module—and which are not, so 

that they may be changed.
4. To provide a controlled way of initializing data types.  
5. To provide a localized way of enforcing and verifying that vital data invariants hold during the 

execution of the program.
6. To provide separate compilation.
7. To hide the source code of the implementation as a “trade secret” while giving enough 

information for compilers to link into the module—this is done by having separate 
“specification/definition/header” and “implementation” files.  [Implementation hiding refers to both 
visibility and this.]  [However, the recent Open-Source movement is downplaying the importance 
of this.]

8. To wrap related code inside a namespace, so that it cannot cause name conflicts with other 
code.  (This becomes a real issue as projects pass 100,000 lines.  ANSI C++ introduced a 
feature called namespace for organizing variables that would have been “global” otherwise.)  

 
We can once again view Ada in the rear-view mirror as the most prominently developed evocation of 
the procedural-language approach to modules and some germinations of classes.  Here is an Ada 
package:
 
--File “customers.ads”---Ada spec file.

with [other packages]; use [stuff];

 
package Customers is    --public part

  type Customer is private;

  type Clientele is limited private;

  --so “:=” and “=” unusable for Clienteles.

 
  procedure Create(c: out Customer;

                          name, address: in MyString;

    [other information]);

 

 



 
  procedure addCustomer (cbase: in out Clientele; 

                                   newC: Customer);

  procedure billCustomer(c: in out Customer);

  procedure deleteCustomer (cbase: in out Clientele; 

                                      oldC: Customer);

  ...

private --Type info here, in the spec file, is exposed to readers.  

          -- In Ada95 this area works like “protected” in C++.

  type Customer is record

    [fields for customers]  

  end record;

  type Clientele is array(integer range <>) of Customer;

end Customers;

 
Then one must have a separate “package body” file named “customers.adb” that defines all the 
members, much as a .c or .cc file does in C or C++.  
 
Modula-2 uses files whose first lines are Definition Module and Implementation Module.  The 
language was quite popular for courses through the early 1990s and was adopted for real software 
projects by DEC, but even though modules fixed so many problems, applications programmers began 
to realize:
 
 
What Modules Don’t Do
 
First, lets note some minor “clunks” of modules:
 

• A minor irritant is that one person’s create is another’s make is another’s initialize is 
another’s init... and so on.  But this points to a potentially more troubling fact:

• Objects of an exported type have to be declared in statements separate from the procedure call 
that init-ializes them.  In the interim, the objects have to be considered invalid.  Yes, of course, 
one should call the proper initializer right after the declaration, but Pascal, Modula-2, Ada, and C 
all require declarations to be set apart from “body” code, often far enough away that it’s easy to 
forget to initialize one and go astray.  Even aside from this, what about declaring an array of 
such objects?  Stopping to initialize each one in separate calls for each one might be scads of 
unwanted time overhead.

• And why should one need a separate procedure call to initialize a data object anyway? !
•  

But the most important lack is the following:
 
 

 

 



 
 
That’s not quite true: modules can model the Has-A and Uses relationships—one can import types from 
another module, and for Has-A, one can define record fields of imported types in your own module’s 
record types.  But what’s missing is the Big One:
 

 
This relationship comes often in the “real-world” environment that we are trying to model.  For instance, 
a Customer database will typically have many different categories of customers.  The basic features 
common to all customers (name, balance, etc.) can be written into a base type  Customer, and 
variations built on that.  For instance, a CorporateCustomer may have extra fields such as 
invoiceAccountNo and bondRating.  Let’s look at several ways to model this relationship.
 
[Ada variant records used to be covered in earlier editions of Sebesta---even may hardcopy 9th 
edition---but were replaced by F# in the 12th edition's section 6.10.  And through the 9th edition 
at least, Sebesta had a section on Ada95 in the OOP chapter 12.  I am keeping the following 
material because variant records resemble OCaml datatypes and also relate to the 
implementation of OOP via object-type tags in all the major languages.  Note how the main 
running example gets repeated in C++ and then Java.]  
 
 
Variant records (Pascal, Modula-2, C, Ada–shown):
 
package body Customers is

  type CustTags is (Base,Corporate,...);    -- an Ada enumeration type

  type Customer(kind: CustTags) is record

    name: MyString;        -- user-def. strings

    balance: DollarAmt;    --also user-defined

    case kind is

       when Base => null;

       when Corporate =>

          invoiceAccountNo: integer;   --(?)

          bondRating: MoodyBlues;    --(!)

 

 



          ...

       when [etc.]

    end case;

  end record;

 
  procedure printAccountInfo(c: Customer) is

  begin

    case c.kind is

       when Base => [print out base info]

       when Corporate => [generate a corporate report]

       when [etc.]

    end case

  end printAccount;

 
  procedure billCustomer(c: in out Customer;

                                 x: DollarAmt) is

  begin  

    c.balance := c.balance + x;    --needs no tag check

  end billCustomer;

  ...

end Customers;

 
 
Type Extension (Modula-3, Oberon, Ada95–shown)
 
package body Customers is

  type CustTags is (Base,Corporate,...);

  type Customer is tagged record

    name: MyString; --user-def. strings

    balance: DollarAmt;

    ...

  end record;

 
  type CorporateCustomer is new Customer

  with record

    invoiceAccountNo: integer;   --(?)

    bondRating: MoodyBlues;    --(!)

  end record;

 
  procedure printAccountInfo(c: Customer) is

  begin

    [print out base info]

 

 



  end printAccount;  

  procedure printAccountInfo   -- overrides

    (cc: CorporateCustomer) is

  begin

    [generate a corporate report]

  end printAccount;

 
  procedure billCustomer(c: in out Customer;

                                 x: DollarAmt) is

  begin  -- simply inherited by CorporateCustomer, no override

    c.balance := c.balance + x;

  end billCustomer;

  ...

end Customers;

 
In the Ada95 code, the “tag” becomes implicit and is directly supported by the language.  Notice that 
the code “looks” less clunky.  Most important, it is possible to add more kinds of customers without 
having to go back and edit “case blocks” in all the pre-existing data declarations and procedures.
  The rules of Overloading and Type Derivation (via “new”—recall from Ch. 6 notes on “Types”) that 
were already present in Ada83 now take over and ensure that things work the way we’re accustomed to 
in OOP:
 

• The type extension adds new fields, just like in C++.  One can also do type extension without 
adding new fields by writing “...with null record;”

• An object cc of the derived type CC can be used in a call such as billCustomer(cc,x); 
without an explicit conversion.  In OOP-speak, CC inherits this operation from C.

• However, the rules of new prevent a base object c from being used in a procedure such as 
getBondRating(cc: CC)—a call with argument c would be caught as a compile-time error.
 

• Most relevant for us, however: All OOP languages basically work by the same kind of “tag”-
lookup and case-analysis that we saw with Ada variant records!  The difference is not so much in 
the underlying mechanism but in the convenience to the programmer of extending existing types 
and putting the new methods in separate files.  The Ada95 scheme’s main drawback is that it still 
separates types and methods.

 
 
Type-With-Module Extension: (Simula67, Smalltalk,  C++ (shown), Java, etc.)
 
class Customer {

   MyString _name;           //default area is private

   DollarAmt _balance;

public:

 

 



   Customer(MyString name, DollarAmt balance)

      : _name(name), _balance(balance) {}

   Customer(MyString name)    //since one parameter, could say "explicit"

      : _name(name), _balance(0) {}

   void bill(DollarAmt x) {   // “mutator”

      _balance += x;

   }

   virtual void printAccountInfo() const {

      [print base info] 

   }

};  //end Customer.  Semicolon mandatory

 
class CorporateCustomer: public Customer {  

   int invoiceAccountNo;     //(int ?)

   MoodyBlues bondRating;

public:

   CorporateCustomer(MyString name, Etc.)

      : Customer(name), invoiceAccountNo(Etc.) { }

   virtual void printAccountInfo() const {    //overrides

      [print a corporate report] 

   }

};  //end CorporateCustomer

 
Note that the “explicit first parameter” c or cc of the Ada methods becomes the “implicit first parameter 
before the dot” in C++. Ada printAccountInfo(c) becomes c.printAccountInfo() in C++, and 
Ada billCustomer(c,x) becomes c.bill(x).
Here the methods are inside the record structure  Note also how constructors in C++ answer the minor 
complaints about initialization in Modula-2 and Ada under “What Modules Don’t Do” above.
 
The calls c.printAccountInfo() and cc.printAccountInfo() are statically bound.  To get 
“virtual” behavior, one can use the pointer type of the base class to stand for “the class-wide type:”
 
   Customer* c3 = &c;       //points to a Customer

   c3->printAccountInfo();  //prints base info

   c3 = &cc;  //now points to a CC object

   c3->printAccountInfo();  //corporate report.

 
Now the method binding is done at activation time, i.e., “dynamically.”
  
In Java, every object variable behaves like a C++ pointer, and every member function is “virtual” by 
default.  Here is the same example sketched in Java:
 

 

 



public class Customer {

   String name;         //default area is protected

   DollarAmt balance;   // using _ is legal but frowned on; you can

                        // write this.balance to emphasize a field name

   public Customer(String gname, DollarAmt gbalance) {

      name = gname; 

      balance = gbalance;

   }

   public Customer(String gname) {

      name = gname; balance = 0; 

   }

   public void bill(DollarAmt x) {  //“mutator”

      balance := balance + x;

   }

   public void printAccountInfo(){  //“accessor”

      [print base info] 

   }

}  //end Customer.  No semicolon!

 
public class CorporateCustomer extends Customer {

   int invoiceAccountNo;  //(int ?)

   MoodyBlues bondRating;

 
   public CorporateCustomer(String name, Etc.) {

      super(name); 

      invoiceAccountNo = Etc.; 

   }

   public void printAccountInfo(){ //overrides: every method is "virtual"

     [print a corporate report] 

   }

}  //end CorporateCustomer

 
Note the absence of const, and super(name) in place of the named constructor call in the 
corresponding C++ code.  Also note that public (and private and protected) is applied to 
individual members, not to a “region” of the class.  Now let’s look at some calls in Java:
 
   Customer c3 = c;       //does not copy c !

   c3.printAccountInfo();  //prints base info

   c3 = cc;            //does not copy cc

   c3.printAccountInfo();  //corporate report.

 

 

 



These calls are dynamically bound, at activation time.  If you want to use a method like 
getBondRating() that is defined only in the derived class, then you need a “promotion cast” such as
 
   ((CorporateCustomer)c3).getBondRating();

 
For this to work, c3 had better be holding a CC object at the time this line is executed—otherwise Java 
will throw a RuntimeException.  One can pre-test for this via the instanceof keyword, as in
 
   if (c3 instanceof CorporateCustomer) {

      ((CorporateCustomer)c3).getBondRating();

   } else {

      [do something else...];

   }

 
Cast notation appears much more frequently in Java than in C++.  (I originally wrote this in 1997--
KWR.)  It may look ugly, but...it took C++ a long time to standardize an equivalent mechanism that in 
this case would involve a call to test a Customer* pointer by
 
   CorporateCustomer* q = dynamic_cast<CorporateCustomer>(&c3));

   if (q) {

      q->getBondRating();

   } else {

      [do something else]

   }

 
If the cast fails, then q is set equal to NULL (now called null but still just 0 under the hood), which fails 
the "if" test.  If the cast succeeds, then the call---which the compiler already greenlights by q having 
the derived class type---will not cause a segmentation fault.  This is all more complicated and “heavy” 
looking than in Java.
 
To declare and initialize a new Customer object, Java uses the syntax
 
   Customer c4 = new Customer(“Jones”);

 
The repetition of “Customer” may sound quaint, but it actually comes straightforwardly from the 
conjunction of pointer and constructor syntax in the analogous C++ line
 
   Customer* c4 = new Customer(“Jones”);

 
The upshot is that although Java does away with the &, *, and -> operators of C++, and thus prevents 
you from manipulating pointer addresses explicitly in the code, implicitly “under the hood,” everything 
(except primitive types) behaves like pointers in C++.  Thus the sequence c4 = c3; 

 

 



c4.bill(99.50); also bills c3!  Some other comparisons to C++:
 
Every “library-level” (a.k.a. “file-scope-level”) item in Java must be a class (or an interface, which is a 
special kind of class with no data fields or constructors).  In particular:
 

1. There are no “global variables” or “global functions,”
2. Even main resides inside a class—actually, you can have a main inside every class!  (This is 

useful for supplying a “test driver” for classes.)  
3. there is (still currently) no separation of method header and body as in Ada and C++.

 
While on that score, Java does not use “::” to connect the classname to items in the class; the Ada “.” 
notation is used throughout.   Java “packages” remove most of the need for “friend” in C++, and 
refine C++’s access/visibility rules (one refinement got axed in 1995).
 
 

 
 
 
Sebesta's Takes (12.1--12.3)
 
The above examples have illustrated the evolution of what Sebesta calls three "essential 
characteristics" of OOP:
 

1. Implementing ADTs
2. Inheritance
3. Dynamic binding---in particular, dynamic dispatch of virtual method calls.

 
A convenient feature of the last is that the same mechanism enables both static typing and dynamic 
binding of method calls.  Sebesta gives the example of an object hierarchy based on a class 
Building that can have many derived classes ranging to way-out-there ones like 
FrenchGothicCathedral.  Each can have a drawBlueprints() method.  We can't give any 
meaningful code for the blueprints of a vanilla Building.  But by putting an abstract method of that 
name in that class, we:
 

• ensure that every derived class either defines or inherits a concrete implementation of the 
method, and 

 

 



• force every call from an actual concrete building object to follow a super chain until it finds an 
implementation of the method---the call cannot be statically bound to the base class version 
because it has no code body.

 
(Don't confuse the superclass chain with either the static or dynamic links in a subprogram call chain.)  
Sebesta also helpfully distinguishes the name of the invoked method as the message, reserving 
method to mean the actual code that gets called.  Thus he says that messages are bound dynamically 
to methods.
 
Sebesta's own list of Design Issues For OOP Languages:
 

1. Should the language exclusively use objects?  
(a) C++ and Python and OCaml: no.
(b) Scala yes---even the basic types are objects.
(c) Java and Javascript: everything except the bedrock basic types is an object, and we even 

provide Object-based workalikes of those.
2. Are Subclasses Subtypes?  My "Square-Is-A-Rectangle?" example from the first lecture is an 

instance of this, but Sebesta gives an even narrower formulation. The text's mantra is:
– A subtype is supposed to inherit behavior as well as interface;
– A subclass inherits implementations, primarily for code re-use.

3. Should multiple inheritance---of implementation as well as interface---be allowed?
– C++ allows unrestricted multiple inheritance of classes.  To resolve the "Diamond 

Problem", the programmer must designate which base class is "virtual".
– Java allows multiple inheritance only of interfaces.  Each class must have only one super.  
– Scala allows multiple inheritance only of traits; as in Java, a class can have only one 

super.  But Scala's traits are richer than Java's interfaces and can hold data and concrete 
implementations, leading to the Diamond Problem.  

– OCaml allows mixin inheritance, meaning (basically) that if A is your super, you can also 
inherit from a class B what B bases only on its own inheritance from A.

4. Are objects allocated only on the heap, or can they be stack-dynamic?  Morphing the question a 
little: does the language provide value objects?

– Java: no.
– C++: yes---indeed, keeping full support for value objects is a main motivation.
– Scala: yes ("case objects" and "case classes"), but they can't inherit from each other.
– OCaml: Pure-value objects by default unless one declares a field val mutable.  

5. Must all bindings of method code to messages use the same dynamic lookup mechanism, or 
can some of the bindings be static?  Here static means that a message x.foo(...) is bound to 
the same code whether x currently holds a base class or derived class object.

– C++: to get dynamic dispatch, you must both declare the foo method to be virtual and 
must invoke it either as px->foo through a pointer or must create the variable x as an 
express reference to an existing object.

– Java: dynamic is only option---though the ability to access an ancestor-class 
implementation of a method via super prvides a little effect of static.

 

 



– Scala (esp. 3.0): We have syntax for everything now...
– OCaml: customizable like Scala.

6. Can classes be nested---and is there any privileged point to doing so?  If so, how full-fledged 
and/or independent are the objects of those classes?

7. How is initialization done?  (This is a huger topic than appears from Sebesta.)
8. Can new classes be defined and their objects created during the run?  This is part of what 

section 10.6 on reflection is getting at.
 
The Diamond Problem
 
To model personnel at UB, we can start with a base class Person.  It can have fields not only for name 
and address etc. but also the basic UBID is the same for everyone.  From there we can define the 
common idea of an account.  To make this more concrete than typical textbook examples are, let's 
also imagine that the system adopts an architecture in which events affecting the account are logged 
rather than passed as explicit parameters.  When requested, a parameterless method 
updateAccount() consults the log, and the account is updated accordingly.  Then it is natural for the 
system to branch this way:
 

• class Student extends Person { ... updateAccount() for tuition coming in ... }
• class Employee extends Person { ... updateAccount() for salary going out ... }

 
But increasingly nowadays there is a category that blends them:
 

• class UTA extends Student,Employee { ... which updateAccount() to re-use? ... }
 
There are various levels of issues and workarounds:
 

• At lowest level, the account field can be inherited by both Student and Employee.  Then the 
rule of combining visible fields from inherited classes will induce the compiler to allocate two 
copies of that field in the record structure for class UTA.

– Workaround 1: declare the account field private in Person.  Still leaves other 
problems.  (Available in C++ and Java but has other issues.)

– Workaround 2: treat class extension as field inclusion.  Whichever of Student and 
Employee is included last gets to define the account field in the class UTA.  (Used by 
Scala with traits and OCaml with anything.)

• Next issue: the UTA constructor will want to invoke constructors in both Student and 
Employee.  Each of those in turn wants to invoke a Person constructor.  So it looks like the 
Person part will get constructed twice.

– Workaround 1: In C++ one can declare one or both Student and Employee to derive from 
: public virtual Person.  One of several effects of this is that the UTA constructor 
can call the "grandparent constructor" Person directly---once.

• General issue: How do we consistently re-use both the Student.updateAccount() and 

 

 



Employee.updateAccount() methods?
 
Even the last issue is largely helped if we have a situation where it makes sense for (say) Employee to 
inherit from Student.  This would largely resolve issues of UTA inheriting from both. Or, perhaps there 
is a way to inherit code but not data from Employee.  In various fashions, Employee would then be a 
mixin, defining mixin inheritance.  Mixin inheritance is generally considered software-engineering 
sound.
 
 
Other Design Issues
 

1. Is there a notion of object that is separate from the notion of class?  Can one have objects 
without classes?

2. Is there support for singleton objects, like Clientele in the "Customer" example?
3. Are constructor arguments distinguished as class arguments from other fields?  (Scala and 

OCaml: yes)
4. Are accessor features of classes distinguished in other ways?  (get/set in Scala, C#)
5. Is class extension treated as specialization or as generalization?   (Continuing discussion from 

before spring break, we will use thuis as one "angle" on OCaml...)
 
 
OCaml Classes and Objects
 
Main source: https://ocaml.org/docs/objects
Next recommended source: https://dev.realworldocaml.org/classes.html
 
 

 

 

https://ocaml.org/docs/objects
https://dev.realworldocaml.org/classes.html



