
CSE305 Week 13: More Modern Design Issues For OOP Languages

We continue with some substantial topics not given focus in the text. Then we tie things back to OCaml
and move on to Prolog.

Covariance and Contravariance

The issue of method compatibility is not just with binary methods. Consider the following object
hierarchy. The previous class Polygon is renamed "Bollygon" so that it has the same letter "B" as
"base class". Ellipse derives from ClosedCurve, but these

The code for whether a diamond fits inside an ellipse is much simpler and faster than whether a
general polygon can fit inside an ellipse, or a diamond can fit inside an arbitrary (smooth and
continuous) closed curve. Hence there is good reason to call it when applicable. The question is, can
it be incorporated within the usual O-O dynamic-dispatch and override mechanism?

The problem is, what happens when we call b.fitsInside(c) when b holds a Diamond object D but c
might hold only a basic ClosedCurve C? Dynamic dispatch says that finding D is the trigger to bind
and call the code for Diamond.fitsInside. But that code relies on the argument being an Ellipse.
In practice, the possibility of a code crash is averted because:

• Diamond.fitsInside is not considered a legal override of Bollygon.fitsInside.
• Newer compilers will probably warn that it is only an overload, and give a compile error if you try

to mark it an @Override.
• So the code b.fitsInside(c) will be statically bound to be the base-class version (only). This

will be perfectly safe, just not take advantage of better code for derived-class shapes that are
more regular.

• Regardless, in OCaml terms, this public method prevents Diamond from being a true subtype of
Bollygon. This is an example of a derived class being a "subclass but not a subtype." (Added:
One can reach similar conclusions about a mutable-Square being incompatible with a mutable-
rectangle, but this

Bollygon

Diamond

B

D

ClosedCurve
C

EllipsefitsInside(E) E

fitsInside(C)

??

The buzzwords for this situation are:
• Compatibility for return types is covariant, meaning it works in the same direction as

extension/subclassing. For instance, having Diamond.foo() return an Ellipse would be fine to
override a method Bollygon.foo() that returns a ClosedCurve.

• It is also covariant "by default" for the invoking object.
• But for parameters it is contravariant. For a general example, Derived.bar(C arg) can

override Base.bar(E arg).

(The last two points also exemplify a way the Ada95 syntax of having the invoking object be inside the
parentheses with the other parameters was misguided.)

One "non-solution" is that programmers can always write (ugly) code like so (C++):

for (Bollygon* bp: bollygons) {

 Diamond* dbp = dynamic_cast<Diamond*>(bp);

 for (ClosedCurve* cp: curves) {

 Ellipse* ecp = dynamic_cast<Ellipse*>(cp);

 bool fitTest = (dbp && ecp) ? dbp->fitsInside(*ecp)

 : bp->fitsInside(*cp));

 if (fitTest) {

 ...

 }

 }

}

The call dbp->fitsInside(*ecp) can then be statically bound to the derived-class method body by the
types given to the dbp and ecp pointers. This call will only be executed when the invoking object and
the argument have the right types. Then it will give the desired time savings over the base-class code---
which is run in all other cases.

Another idea is sometimes called "re-dispatching": have the body of b.foo(c) call c.bar(...) which
does the actual work. This changes how the code is written, though.

The desire to make this mechanism work more naturally and save programmer carpal tunnel syndrome
(but ChatGPT may soon write such crufty-but-automatic code for us, like my PolyOps.ml file for the
project) has led to numerous proposed solutions, including the following:

1. Multiple Dispatch: Here this would automatically poll both the invoking object and its argument
for the actual types, calling the faster code if both are derived. The syntax might be something
like (b,c).fitsInside().

(a) Pro: Seamless and effective

https://towardsdatascience.com/multiple-dispatch-a-powerful-programming-paradigm-8bc8fcd2c73a

(b) Con: Slow, complicates run-time system.
2. "Tandem Objects": Make (b,c) an actual Tuple object, not just handy syntax. Prescribe

rules for its full joint ownership of methods, versus individual ownership in the two classes.
(a) Pro: More efficient than multiple dispatch because only one polling of the actual object

need be done.
(b) Con: more work for the programmer, clutters up class system, not seamless.

3. Retroactive Abstraction: This means allowing users to declare new superclasses. In this case
we could declare (in made-up syntax):

 class Anygon super_of Bollygon {

 ...

 bool fitsInside(Ellipse e) { ... }

 }

This changes the Booch-style diagram so that Diamond.fitsInside and Bollygon.fitsInside
are both legal overrides of Anygon.fitsInside:

Doing this makes the whole system 'legal"---possibly after removing the Booch arrow from Diamond to
Bollygon. However:

• It does not solve the original problem of wanting to loop through arrays of various shapes, which
have to be given the base-class type designators Bollygon[] and ClosedCurve[], and call
b.fitsInside(c) on each pair. You could do the explicit "upcast" Anygon(b).fitsInside(c)
if the system doesn't upcast automatically, but you would still need to downcast the variable c to
the class E just to invoke the base method.

• Writing Anygon in the code would clutter the class hierarchy and amplify the yo-yo problem.

The interesting question for us, however, is whether OCaml's subtype-compatibility system, which
infers compatible types as needed, is already doing this kind of thing under-the-hood. Consider simply
doing the following from the bare ocaml prompt---nothing preloaded:

Bollygon

Diamond

B

D

ClosedCurve
C

EllipsefitsInside(E) E

fitsInside(C)

Anygon fitsInside(E)

https://en.wikipedia.org/wiki/Yo-yo_problem

 # let f x = x#pop;;

 val f: < pop : 'a; .. > -> 'a = <fun>

Although this code is nothing but a "stub" (at most a prototype of a function), OCaml allows it. OCaml
infers the existence of a type "< pop : 'a; .. >", which it says is the domain of the function f. The
blue .. means that any extension---here meaning subtype---of this type gives a valid argument to f.
This will include your project object---presuming that you keep the name pop from the sample code
covered in the Tue. Week 12 lecture.

The point to reflect on is that this domain type was not explicitly coded by me or anyone. It is
determined by OCaml as the "least common denominator"---a more technical term is meet---of all types
that can be the invoking object for this function. In a relatable but maybe different sense, the class
Anygon is the minimum conjunction of Diamond and Bollygon needed to rectify the class hierarchy
into one with legal overrides. Thinking in OCaml terms, it may be the "greatest compatible supertype"
of Diamond and Bollygon. In that sense, it "is" Anygon---and OCaml may already be conjuring into
existence a whole host of object types that would create too much clutter if coded explicitly. Is this a
"yo-yo"-type danger, or is OCaml's way of leaving these types implicit OK?

The threshold of what I don't know is whether and how far OCaml really tries to infer something like a
common-compatible supertype of Diamond and Bollygon. The "pop" example involves only a single
descendant. This may be at the level of recent and current changes to the language.

Type Variance and Generalization

If this seems complicated enough with concrete shape types, imagine if C and E (not to mention B and
D) are templated/generic type variables.

• Mainstream languages by-and-large have support for covariance constraints, exemplified by
the Java syntax class Foo<E extends Bar> { ...

• Subtype constraints in newer languages including OCaml are written with < instead of "extends".
• Then you can also have "superclassing constraints" and write them like S > Bar. (I have no

experience with them.)

OCaml also allows marking 'a style type parameters + for covariant or - for contravariant as well as !
for "injectivity"---which means operationally (?) that the type-inference mechanism is allowed to
presume an actual subset relation on the data, not just compatibility of the interface. I skipped over this
when giving the syntax for basic type declarations in the week 4 notes---here it is in full:

https://v2.ocaml.org/manual/typedecl.html#start-section

Finally, to come back to the larger question of when and whether type extension is specialization or
generalization, the essence seems to be that the onus for determining this is placed on the
programmer rather than be borne by the language.

In particular, OCaml's extensible datatypes seem to punt this question, just because the name of the
datatype stays the same. You don't get something like expWithAssign generalizing exp; the name
stays exp (or 'a exp) throughout.

Singleton Objects

[Language support varies widely, no clear picture. In C++ one can "disable the copy constructor" by
declaring it private. Languages that elevate reference semantics tend to make it harder to clone
objects.]

[Show project code and what is intended as singleton versus having multiple instances. Pure modules
like Parser are clearly singleton. But how about the EvalStack and Storage objects?]

[The lecture finished by showing and discussing project code---illustrating mainly OCaml's handling of
exceptions and option types, and coding quirks that go with using match to unpack multiple levels of
Some and None. The latter two are literally existential, and if you've read The Myth of Sisyphus by Albert
Camus, you know that recursion is the root of existential despair. The next lecture will tie in the parser
code after flying over how a fundamental coding task appears in various languages.]

Programming Styles Across Languages---Including Prolog

Let's consider how the insert method for a binary search tree ADT might be coded in various
languages we have seen. We'll start with a mashup of Java and Scala syntax:

class BST<E extends Comparable> {

 class Node(Node left, E item, Node right); //Scala saves lines of code here

 Node root;

 Node base; //as in "CL&R[S]" Algos text, instead of using null reference.

 ...

}

The following code is buggy---but how it looks, and how the bug gets automatically fixed in similar-
looking code, are what we care about here:

 void insert(E x) {

 Node seeker = root;

 while (seeker != base) {

 if (x.compare(seeker.item) < 0) {

 seeker = seeker.left;

 } else { //allow case item >< x, insert same-key items rightward

 seeker = seeker.right;

 }

 }

 seeker = new Node(base,x,base); //BUG: seeker not attached to tree

 }

One usual fix is to use a "trailer" reference/pointer that stays on the parent node of "seeker" and so
that if seeker hits the base and last went left, then we do trailer.left = new Node(...); if seeker
last went right then trailer.right gets the new Node instead. Then the new node is attached to the
tree. Or just use trailer for everything, or use parent links. In C++ one can use double indirection:

 //C++ code

 void insert(E x) { //class has Node* root and Node* base

 Node** sseeker = &root;

 while ((*sseeker) != base) {

 if (x.compare((*sseeker)->item) < 0) {

 sseeker = &((*sseeker)->left);

 } else {

 sseeker = &((*sseeker)->right);

 }

 }

 (*sseeker) = new Node(base,x,base); //OK, (*sseeker) /is/ Node->left

 } //or /is/ Node->right.

The reason this works where the other fails can be shown from storage-object diagrams. There we
may take Node to be a record of three fields, each 8 bytes wide. Suppose the x to be inserted
compares less than u but greater than v in the final leaf:

The difference in a nutshell is that when the C++ sseeker compares x with v, it does so through the
purple arrow at right. The else branch gives it the address of the right field of the node with v, so it
gets the value 500736. Now the * dereference of that value equals the value of the base pointer, so the
while-loop stops. At that moment:

• sseeker is 500736 as an rvalue, having initially been 300000 and then 500480 not 500496 (the
latter being the address of the right field of the Node holding u), until it became 500736 after x
compared >= v. (As an lvalue, sseeker is always 700000.)

• Hence (*sseeker) is the underlined 500000 as an rvalue, which makes it equal to base.
• But as an lvalue, (*sseeker) is still 500736. This deposits the address 500960 of the new Node

into the storage object for the right field of the of the Node with v. So the new Node is
connected to the tree.

Yuck. But 30 years ago I read sources saying this was the best way to code a BST in C++. And as
review, note how the diagrams of storage objects, the levels of addressing, the notions of lvalue and
rvalue, and the way they are translated without-or-with an extra fetch which we understand through the
"rudimentary stack language", all come together to help understand this code. In the larger real-world
picture, however, it must again be said: Yuck.

500480500480

seeker

base

500000

500000

500720 500744

500720 500744

u

v500000

500000 500000-

x

w

500480sseeker

base

500000

500000

500720 500744

500720 500744

u

v500000

500000 500000-

x

w

root
500480

root
500480

300000
700000

300000

500736

500000

500736

500000

Buggy Java code Good C++ code

500496500496

500000 500000x
500960

500000 500000x
500960

500480

First note, however, how recursion fixes the bug organically:

 //Java (C#, Scala, C++ etc. in this style would all work similarly.)

 void insert(Node at, E x) { //initially call insert(root, x)

 if (at == base) {

 at = new Node(base,x,base);

 } else if (x < at.item) {

 insert(at.left, x); //at.left and at.right /are/ fields of a Node

 } else {

 insert(at.right, x); //so a new Node here will connect to the tree.

 }

 }

This recursive code is still imperative, however, because the recursive branches all speak the
command verb insert, while the base case performs an action---an allocation---rather than return a
value. Now let's see how OCaml will do it, first without tail recursion:

 type 'e bst = Base | Node of 'e bst * 'e * 'e bst

 let rec insert (subtree, x) = match subtree with

 Base -> Node(Base, x, Base)

 | Node(left, item, right) ->

 if compare(x,item) < 0 then

 Node(insert(left, x), item, right)

 else

 Node(left, item, insert(right, x));;

This works for the same reason the recursive Java code emulated the C++ bugfix of the original bad
code: the recursive call works from the left or right field of the calling Node. There is a more primal
way of seeing that this code is right, than delving into the C++ workings. Read the code this way:

• The result of inserting x into an empty tree is a node with x;
• The result of inserting x into a nonempty (sub)tree is a node that includes the result of inserting x

into whichever of the left or right subtrees applies.

This code is declarative in the sense of declaring results as nouns. Whereas the recursive-but-
imperative code has insert outside and node stuff inside on each branch, the declarative code has
Node outside and the recursive calls to insert being inside.

However, tail recursion wants the calls to insert to be on the outside and to put the whole branch inside
the (...) of insert:

 let rec insert (subtree, x) = match subtree with

 Base -> Node(Base, x, Base)

 | Node(left, item, right) ->

 insert(if compare(x,item) < 0 then left else right, x) (* Buggy *)

 ;;

Oops---this "throws away" the other half of the tree. We need to use the accumulator idea somehow to
incorporate both subtrees of the node we're at into the resulting tree. So let's call the accumulator t for
(new) tree rather than acc and dive right into the usual syntax:

 let rec insert (subtree, x, t) = match subtree with

 Base -> t (?) Or -> some function of (x,t) (?)

 | Node(left, item, right) ->

 insert(if compare(x,item) < 0 then left else right, x, update(x,t))

 ;;

When we were doing recursion over a linear data structure like summing over a list, the update function
was just acc -> x + acc. Here, however, what can it be?

Life would be easier if we were programming a Boolean function insertingGives that just said t was
equal to the tree we want. Then the base case is easy to write:

 (** t is the result of inserting x into s *)

 let rec insertingGives(s, x, t) = match s with

 Base -> t = Node(Base,x,Base)

How about the recursion case? For tail recursion, we need it to have the form

 | Node(left,item,right) -> insertingGives(..., x, t')

Let's use the when clause idea to divide this into the two comparison cases:

 | Node(left,item,right) when compare(x,item) < 0 ->

 insertingGives(..., x, t')

 | Node(left,item,right) when compare(x,item) >= 0 ->

 insertingGives(..., x, t'')

Now there is some more logic we can bring to bear to tackle the problem:

• Inserting x into a nonempty tree s can never make the resulting tree t be empty.
• Nor will x displace the original item: we are always inserting with a new leaf.

• So t will always have the form Node(left',item,right') for some possibly changed left and
right subtrees.

This means we should actually first be doing a nested match on t before applying our guarded-branch
idea. Now the lightbulb flashes on: if x < item then what we need is that the result of inserting x into left
gives left', with item and right staying the same. Whereas if x >= item then we need that the result of
inserting x into right gives right', with left and item staying the same.

 | Node(left,item,right) -> match t with

 Node(left',item',right') when x<item -> insertingGives(left,x,left')

 | Node(left',item',right') when x>=item -> insertingGives(right,x,right')

The logic here is not quite airtight because we need the "stays the same" part. But owing to how
OCaml match-case behaves, we can just stick that too after when and use the wildcard feature to
declare that any other case is false:

 | Node(left,item,right) -> match t with

 Node(left',item',right') when x<item && item = item' && right = right'

 -> insertingGives(left,x,left')

 | Node(left',item',right') when x>=item && item = item' && left = left'

 -> insertingGives(right,x,right')

 | _ -> false

This is indeed legal---partly because apostrophe is allowed in an ordinary variable name whan it is not
the first character:

But---does this help us build the resulting tree? It would be nice if we could say the tree is built
automatically. Then we would enjoy all of the following advantages:

• We didn't have to worry about how the algorithm operates and whether pointers "fall apart"---we
just had to recurse the logic of: "left' is the result of inserting x into left or right' is the result of
inserting x into right, whichever case applies."

• We got tail-recursive code---at least under the liberal "in any branch" definition.
• Although each branch begins with a verb again, it's not an imperative action verb like insert; it's a

logical status verb, insertingGives.

All told, this code gives the appearance of only needing to declare the resulting logic. Well, there is a
language in which you can write specifications and they actually execute---the system figures out how
to execute them. Its entire code for this problem looks like this:

 insert(base, X, node(base, X, base)).

 insert(node(Left, Item, Right), X, node(LeftNew, Item, Right))

 :- X < Item, !, insert(Left, X, LeftNew).

 insert(node(Left, Item, Right), X, node(Left, Item, RightNew))

 :- X >= Item, !, insert(Right, X, RightNew).

The ! means that the facts from the :- leading up to this stage, once brought about, are irrevocable. It
is called "cut" and is both a boon and bane of Prolog. It is the only imperative feature built on top of
Prolog's execution mechanism, which is called (logical) unification (via resolution). Unification is
roughly similar to some combination of OCaml's type-inference checker and its subtype determinant.

For all of these reasons: declarativeness, conciseness, reliability, and harnessing a powerful deductive
algorithm, Prolog ("Programmation en Logique") was part of a big "AI hype train" in the late 1970s and
1980s, under the banner of the "Fifth Generation Project." [show link] Like with ML/OCaml, there was
Edinburgh-France synergy here too.

Basics of Prolog

We can make a bunch of observations right away---one can almost learn the whole language from this
single example.

 insert(base, X, node(base, X, base)).

 insert(node(Left, Item, Right), X, node(LeftNew, Item, Right))

 :- X < Item, !, insert(Left, X, LeftNew).

 insert(node(Left, Item, Right), X, node(Left, Item, RightNew))

 :- X >= Item, !, insert(Right, X, RightNew).

1. Variables are uppercase, matchable constants are lowercase---opposite of OCaml.
2. No need to define a separate base | node() datatype---the logic automatically takes ⋅ , ⋅ , ⋅

care of it.
3. No reserved words here: my source wrote nil instead of base.
4. The symbol :- is like BNF ::= and works like ML/OCaml's match-case arrow except that the

"flow of logic" is not strictly left-to-right. Best read as "...is satisfied by..."
5. A line without :- is hence satisfied by itself and works like an axiom. Called a fact in Prolog.

Also called a headless Horn clause in the text.
6. Lines with :- are called rules. Both facts and rules end in a single period.
7. The comma is logical and. The right-hand side of a rule gives a list of stuff, all of which need to

be made true in order to satisfy the left-hand side. Items separated by commas are called

https://en.wikipedia.org/wiki/Fifth_Generation_Computer_Systems
https://users.utcluj.ro/~cameliav/lp/lab8.pdf

terms. The use of just commas in a rule makes it logically equivalent to a Horn clause. (Red
means that using those words is not required.)

8. Having two or more rules with the same left-hand side gives multiple ways to satisfy it, and so
has the effect of logical or.

9. Here, you can verify the result of inserting x into node(Left, Item, Right) in either of two
ways---depending on whether x < Item or x >= Item.

10. Prolog allows something that OCaml doesn't---matching the same variable twice to say their
values in that case must be equal. Used with Left, Right, and Item. In this sense, variables
give "matchable structure" too as well as the lowercase atoms.

11. As with OCaml, the rules are sequential. In OCaml, we've seen examples with mutually
exhaustive when conditions where we could have skipped the second one. My source
(subsection 8.1.4) actually does this:

 insert(base, X, node(base, X, base)).

 insert(node(Left, Item, Right), X, node(LeftNew, Item, Right))

 :- X < Item, !, insert(Left, X, LeftNew).

 insert(node(Left, Item, Right), X, node(Left, Item, RightNew))

 :- insert(Right, X, RightNew).

12. The source also uses a different insertion policy: if x and the node's item compare equal, then

silently don't insert x:

 insert(base, X, node(base, X, base)).

 insert(node(Left, Item, Right), Item, node(LeftNew, Item, Right)) :- !.
 insert(node(Left, Item, Right), X, node(LeftNew, Item, Right))

 :- X < Item, !, insert(Left, X, LeftNew).

 insert(node(Left, Item, Right), X, node(Left, Item, RightNew))

 :- insert(Right, X, RightNew).

The new second rule could also read:

 insert(node(Left, Item, Right), X, node(LeftNew, Item, Right)) :- X = Item, !.

In both cases, the cut ! says "We're done here---don't try any other possibilities to my left." It's like a
one-way valve in the flow of logic. What it does operationally is cut off backtrack in the depth-first-
search that underlies the mechanism of Prolog. This is not search in the tree we're thinking of, but in
the "metaspace" of possible assoiations of Prolog's atoms according to the logic. This meta-algorithm
is rich enough to incorporate the basic BST insertion algorithm via these rules.

13. Because head :- body is read as "if body then head"---or more precisely, "head is satisfied by
body"---the left-hand side is called the consequent even though it comes first, and the right-
hand side is the antecedent.

14. Not only does Prolog have a "REPL" (read-evaluate-print loop) like OCaml and Scala and
Python, its programs are intended to be used as databases that one can submit queries to. If
the query has no variables, it will get a simple true/false response. If it has variables and the
variables can be set to make it true, Prolog will give (at least) one way to do so; if not, Prolog
will reply false or maybe fail.

15. Prolog here makes a closed-world-assumption that if it cannot establish something from its
world of given data, then that something is false. This policy is called negation as failure. It is
"naff" in the British sense of being a little dodgy. To quote the Stones, it's like saying "if you
can't get no satisfaction" then it's false.

[show simpler Sebesta examples] and/or [show analogy to Parser.ml in project code]

To reiterate the point about the bug in the latter: I "refactored" my older parser in Standard ML by
separating off the grouping of unary operations to a separate function. This makes the part dealing with
binary operations shorter and easier to read. I did not, however, create a separate datatype for what
was originally a single function from "gentree" to "ubtree". Instead, I just added Unop and Binop
variants to the original Op within the same datatype. So I created the tandem of groupUnops: gentree
list -> gentree list and group: gentree -> gentree with the extra requirement of removing
every Op not being enforced by the type checking. Whereas, the type-checking of parse: gentree ->
ubtree ensures that no gentree symbols are left in the output.

Prolog does not have a similar notion of "type". So how could we do a similar check in Prolog? We
could try to build checking logic for it directly. A basic fact is hasOp(op X)., and a basic rule is
hasOp(node(X)) :- hasOp(X). We would need more rules to make it "compile-time check" the code,
rather than just "run-time check" a single output. But it could be possible. Prolog's inference
mechanism is powerful and general, but is it seamlessly applicable?

Whether Prolog would help implement and verify the OCaml parser leads to a simple gut-check issue.
The code in Parser.ml already has some patterns that stretch across the whole screen. Giving a
possible result pattern in Prolog would double that wingspan of a line of code. Well, the result patterns
could be on different lines the way the if-then-else expressions already are, but heaviness of syntax
remains an issue in many Prolog sources (in both senses of the word).

