
CSE305 Week 8 Tue.: Arrays Versus Lists / Records / Other Types
 
[First, following my old notes, which were based on Sebesta's older notes.]
 
Arrays
 
First fact: Layout is Linear, even for nested objects in the array.  Using Ada's syntax, which is basically 
the most general possible:
 
A: array(lo..hi) of T ypeIKnowHowToLayOut;

 

 
Separate from this is the compile-time descriptor of the array---snipping Sebesta's figure:

Ada does not require lo = 0 and makes hi inclusive.  Most languages fix 0 as the lower index and 
have you declare a length n, which as an index is exclusive.  T can be any type whose layout is known 
at the time the declaration of the array is elaborated.  Let:
 

• b stand for the "base address" or "binding address" of the whole array storage object.  Usually 
this is the same as the address of the first element, A(0) in Ada and Scala.

• e = sizeof(T), the size of an element of type T in bytes.  Above, e = 48.  
 
The array must be homogeneous as far as the element size e is concerned.  However, if the stored 
elements are all pointers, they can point to objects of different sizes in a hierarchy.  The array is typed 
as the base class of the hierarchy.  
 
The formula for accessing an element A(k), where k is "between" lo and hi in the sense appropriate 
to the language (inclusive versus exclusive upper bound), is
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  b + (k – lo)*e  =  k*e + (b – lo*e).
 
The reason for arranging it the latter way is that the expression (b – lo*e) does not depend on k 
and so can be precomputed. Then locating A(k) in memory requires just one * and one + operation. 
Note also that if lo = 0 like in C, then the expression becomes simply 
 

b + k*e. 

 
This is still one * and one + operation, but it counts as constant time, and there is less pre-computation. 
 For k=3 and e=48 above and b = 212008 we get address 212008 + 144 = 212152.  (Earlier editions of 
Sebesta gave this formula, calling b the "base" address of the array.)
 
Arrays in OCaml
 
OCaml arrays use similar notation to lists, but without :: and with extra | ... | on the square brackets.
 
      # let arr = [|3;4;5|];;

      val arr : int array = [|3; 4; 5|]

 
Unlike with lists, OCaml arrays are mutable for individual entries.  (!)
 
      # arr.(1) <- 7;;

      - : unit = ()

      # arr;;

      - : int array = [|3; 7; 5|]

 
The indexing operation uses parens and a dot.  If you write arr.(1) = 7 it is a Boolean test with an 
array access, not an assignment.  The assignment as an operation returns (), called unit.
 
OCaml arrays are not natively resizable or appendable.  Once created, their length is fixed.  Nowadays 
that may seem a restriction after the general experience of using C++ vector and arrays in Java and 
C# and Python and Scala etc.  Actually, the restriction is true of native arrays in basically all languages.  
The richer kinds of arrays come from library implementations that simulate the extra operations.  
Whether you consider NumPy arrays to be part of core Python is a matter of taste, but it is not the 
bedrock of the language design.  OCaml has the Array module, which among several other things 
allows appending to create a new array:
 
      # let arr2 = Array.append arr arr;;

      val arr2 : int array = [|3; 7; 5; 3; 7; 5|]

 
OCaml does not have "+=" like Scala does to append to an array in place---you have to create a new 
copy.  Which can get expensive with new arrays...  The Array module has conversion functions 

 

 



Array.to_list and Array.from_list so you can (expensively) emulate list operations that way.  
What's the real difference?  In terms from CSE250:
 

• Arrays provide constant-time access to any indexed element.
• Lists provide constant-time appending, prepending, removal, and "splicing."

 
Under the hood, the memory layout of a list usually looks like a linked list:
 

 
or more usually via pointers into nodes strewn in the system heap:
 

 
Traversing the latter kind of list requires extra pointer accesses.  But if you already have a pointer to the 
list's object, there is no extra cost.  And nodes can be spliced in or out in  time.  The diagram O 1( )

shows the third node being spliced out.  Only a single pointer jump of the second node's next pointer 
needs to be executed to do this---the actual deletion of the bypassed node and two orphaned pointers 
can be executed later by garbage collection (or not done at all).  
 
Added: Python calls its [...]-enclosed data structures "lists", but they allow indexing so can be treated 
as if they were arrays.  So can lists in Scala.  Another way Python lists are like arrays is that individual 
elements can be changed---whereas Scala lists (and Python tuples) have immutable items.  However, 
neither Python's nor Scala's lists guarantee that indexed lookup occurs in  time, which is what the O 1( )

NumPy array gives.  So in that sense, Python's "lists" really are more like lists than arrays.  In a third 
sense they are neither---their objects need not have the same base type.  Python can get away with 
this by using pointers to all the objects, per above diagram too.
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Design Issues For Arrays
 
Here is Sebesta's list---the answers are a mix of mine and his:

1. Subscripts: Must they be int?  or allow types convertible to int, like size_t in C++?  Allowing 
an enumeration to index an array is a little weird, because the enum has compile-time fixed size, 
whereas the array has stack-dynamic size.

2. This used to be a bigger issue.  Still optional in C/C++ but mandated in most newer languages.  
E.g. OCaml specifies at core language level that an index out of bounds raises the 
Invalid_argument exception.

3. In old FORTRAN etc., the bounds for all arrays had to be fixed at compile time.  The real 
question is, "do array objects know their length?"  Nowadays the answer is yes, so that variable-
length arrays can be passed as parameters and are generally created "at activation time."  
Arrays allocated on the system heap have lifetimes beyond an activation frame, so their bounds 
are fixed at creation time.  A resizable array, however, has to be fully (non-fixed) heap-dynamic 
in Sebesta's terms.  

4. Static arrays (in C/C++ and older languages) are allocated at compile time, but otherwise the 
answers are generally "at activation time" and "at object creation time."

5. Yes automatically if an array type is legal as the type T.  But access is less efficient than with 
true multidimensional arrays, which must be uniform.  

6. There used to be a global max number of dimensions in FORTRAN etc.
7. Most languages allow both initialization to an "array literal" and allocation to a given size before 

initializing.  For safety, the latter often requires filling in by a given element, e.g. via make in 
OCaml.

8. Slices are a nice selling point of Python, provided also in Scala via its integration of range 
types.  The OCaml Array module has a less-rich notion of sub-arrays.

 
 [goto Sebesta slides]
 
Summary of remaining part of lecture from Sebesta's slides:
 

 

 

https://www.cs.cornell.edu/courses/cs3110/2018sp/l/14-mutable/notes.html


In the later part of the lecture from Sebesta's slides, the first diagram for an array above was morphed 
into one of a multidimensional array.  I have morphed it further to show an array-of-arrays first.  Again, 
the array type T is shown as a record/struct totaling 48 bytes.  My notational convention (orange 6-
digit addresses) suggests that this is a value array allocated in the system stack memory---as one gets 
in C++ and Scala when arrays are created without using new.  For an array on the system heap, the 
addresses are green 7-digit numbers but the relationships in the diagram would not differ much.  [NB: 
The "system stack" really is a stack data structure in an over-arching sense, but the "system heap" is 
not strictly a heap in the data-structures sense.]
 

 
An ordinary array-of-arrays could be "ragged" in two senses: the constituent arrays can have different 
lengths, and they can be---indeed almost certainly will be---separate array storage-objects in memory.  
Whereas, a true multidimensional array must have uniform row as well as column bounds, and is 
usually allocated in one linear sequence in row-major order.  This is shown in the second part of the 
diagram---note that the leftmost addresses for the second and third rows add  to the 5 ×  48 =  240

base address of the previous row.  (FORTRAN uses column-major order because that goes better with 
some code for matrix multiplication.)  The row-major formula is:
 

address of A[i,j] = b + (i-1)*n*e + j*e
 
where  and  for the  matrix , where again e is the size in bytes of the 0 ≤  i <  m 0 ≤  j <  n m × n A

element type.  
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Associative arrays are a core language element in Python and Perl and Ruby.  In C++ and Java and 
Scala they are a library type called map or Map which can in turn be set to one of various 
implementations, say via a hash table or binary search tree.  They have a key type  and a value type K

.  The key type can be any discrete type, meaning any type for which equality makes sense---usually V

excluding float/double and function types.  If M is a map, k is a key, and v is a value, then the 
assignment

M[k] = v 

has these consequences:
 

1. Use the equality test to see if M already has a key equal to k.
2. If not, add k as a key and make v the associated value.  
3. If yes, then overwrite the previously associated value by v.

 
The behavior in point 3 enforces that M never has duplicate keys and has only one value for each key.  
Steps 2 and 3 only need  time but the key search in step 1 needs an efficient data structure to O 1( )

work quickly.  Step 2 says that the map's size grows by 1---Sebesta mentions the idea of a "statically 
sized" map but that's not a major idea now.  A long-burning question is:
 
Can an associative array ever approach a real array (in the special case where  is K = 0, … , n - 1{ }

the key type) in time-critical performance?  
 
Theoretically, the implementation by hash table is supposed to give  time for step 1 as well---which O 1( )

is why associative arrays are called "hashes" in Perl and Ruby---but there are practical hitches.  (In 
Python they are called "dictionaries.")
 
Records have largely been superseded by classes nowadays.  They can be nested---i.e., a field of a 
record can be another record.  Nesting was a visionary feature of the original 1958 COBOL 
implementation of records---curiously, the syntax for that used indentation the way Python does now for 
statements.  C calles a record a struct but does not provide inheritance for them; in C++, a struct 
is fully equivalent to a class that makes public rather than private the default visibility.
 
The main point to mention now is that their fields are named storage objects in themselves, with their 
own binding addresses.  Before a record object is created, you can't know the absolute addresses of 
the fields, but one can know the offsets from the base address at compile time by summing the sizes 
of the fields.  Each field must be of a known type---which can be an already-declared record type.  Here 
is a picture of the offsets for the 48-byte object used as an example throughout.

Access to a record field is direct and immediate just like with a simple variable.  It does not add the 
offset to the base address the way an array adds the index (times the element size) to the base 

 

 

+0

212256

+32+8

212248 212280



address.   This difference in efficiency remains tangible even today.  [Sebesta does mention the idea of 
"dynamic subscripts" for records, but that's another historical item that we can put in the fuhgeddaboudit
 category.]  The offsets are used only in the compile-time descriptor of a record type (copying Sebesta's 
diagram):

 
Tuples we have already seen.  The main difference from lists is that they can be heterogenous, like 
records, meaning can have elements of different types.  In Standard ML, a tuple of size  is formally the t

same as a record with fields named #1, #2, through # .  But OCaml allows tuple values to be read only t

via match, except that pairs (x,y) have functions fst and snd defined to get their fields.  The text's 
mentions of Standard ML and F# are basically equivalent to what we've seen in OCaml.
 
Union Types can be free or discriminated.  Free unions are available in C but---as far as I know---the 
erstwhile mission-critical time and storage reasons to use them (without type checking) no longer apply 
or are not thought worth the safety risks.  The closest experience to free unions I have is that Perl 
allows a number to be treated as a string or number depending on context---and even then I often have 
to resort to calling the Perl looks_like_number function explicitly in my chess data scripts.  
Whereas, Python insists on explicit conversions str and int.  (See also note on "Type Conversions" 
in section 7.4, next lecture.)  Discriminated unions were gee-whiz features in Modula-2 and Ada 40 
years ago but we've been using them in OCaml for weeks with no fanfare.  The example
 

type intOrString = Int of int | Str of string

 
from recitations is the most simply typical one.  The effect here is similar to Python.  The other way that 
the polymorphism of union types enters in naturally is with object hierarchies, so we will revisit this later.
 
Pointers and Reference Types: Sebesta goes into mechanics of pointer and reference assignment 
that we already covered in connection with storage objects before break as part of treating the Chapter 
5 material.  Here's his diagram I briefly showed of assigning j = *ptr:

 

 



Whether a programming language should have automatic garbage collection was a major question in 
the last millennium, but the answer nowadays is almost always yes even in systems-level applications.  
As for dangling pointers, we'll hit them after reviewing the code constructs in chapters 8--10 that can 
potentially create them.
 
Option Types are mentioned in the one-page section 6.12 and on one of Sebesta's slides.  We've 
already seen them in OCaml and have covered the benefit of having a type-checked None value rather 
than using null pointers which could blow up into segmentation faults.  Our attitude will not be to care 
about the various syntaxes for this in certain other languages but to focus on their implementation in 
OCaml as the springboard for ideas of how to use them.  If Sebesta's coverage of these and unions 
and tuples etc. helps round out your understanding of how they work in OCaml, so much the better, but 
for core course material we're doing "single-focus" as much as possible.  
 
Type Checking---we've already touched on this as a main part of the next phase of compilation after 
parsing.  And OCaml's automatic type inferencing has provided royal examples of it.  Type equivalence
 we can fold under the later, broader topic of type compatibility in OOP.  And as regards the last 
section 6.16 on type theory, I mentioned it at the start, alongside literally singing its praises.  That's a 
wrap on Chapter 6.

 

 




