CSE396, Spring 2018 Problem Set 9 Due Thu. 5/3, 11:59pm

Reading:

The rest of the reading is: Chapter 5, sections 5.1 and 5.3, and Chapter 7, but taking the
proof of the NP-completeness of SAT to be the “alternative proof” in Chapter 9. Chapter 6
is skipped, likewise sections 5.2. The “computation histories” part of 5.1 may be skimmed in
Thursday’s lecture or held over to next Tuesday. I have already passed over the subject of
countability and uncountability in chapter 4, but you should read it as a way of reinforcing
your understanding of functions (and the properties of being one-to-one and surjective) which
will be key in chapter 5.

Note that the title of Chapter 5 is “Reducibility” but the key concept is not defined until
section 5.3. The text regards it as already having been implicit in chapter 4, and my lectures
noted how the way the algorithms for Eprys and Eqpg were applied to other problems ex-
emplified the ”positive side of” reductions. The "negative side”—to prove undecidability and
not-c.e. /not-co-c.e. by contradiction—is the subject in Chapter 5. I like to put it up-front,
so Tuesday’s lecture will cover the definitions in section 5.3 before tackling the examples in
section 5.1. One thing to be aware of is that the diagonal language D is implicit in the text’s
treatment of the undecidability of the halting problem (in whose proof it is counterfactually
referred to as a “machine”); my lecture last Tuesday made it explicit but really covered the
same logic. I will use what is actually the old standard name “K” for its complement, namely
the set of programs that do accept their own code. Then K is likewise undecidable. The
chain of reductions will then start K <,, A7y <,, N Ery plus reducing A7p, to the historical
Halting Problem.

Also review these notes in conjunction with previous lectures and with questions 1-6 of
this HW9 on “TopHat”: Although the intersection of two DCFls need not even be a CFL,
the DCFLs are closed under any Boolean operation with a regular set. For instance, let M;
be a DPDA and let My be a DFA. Using the Cartesian product idea, we can combine the
code of Ms into that of M; so that whenever the DPDA M; makes an R-move upon reading
a character ¢ on the input tape, the DFA M also gets stepped forward on c. If M; stays
stationary, M, does not get stepped but is held paused. Provided M; has been edited so
that it always reads all of its input x (without being stuck in a loop, that is), M, is able
to read all of x as well. Then the combined machine M3 gives an answer according to the
Boolean combination of final states ¢, g2 reached by M; and M, in the same way as when we
had two DFAs, e.g. (@1 € F1 A g € F3) for intersection, (q; € F1 V qa € Fy) for union, and
(g1 € F1 XOR ¢y € F,) for symmetric difference. (The main reason why this doesn’t work
for two DPDASs is that they might “clash” both for control of the stack, one wanting to push
where the other wants to pop. Also note that if M; is an NPDA then the idea still works
for N and U but not for symmetric difference—indeed, it can’t work for symmetric difference
because L A ¥* = L but the CFLs are not closed under complements.)

Assignment 9, due Thu. 5/3 at 11:59pm with the previous terms and “stretchy” allowances.

(1) This is the “HW9 Online Worksheet” on TopHat, worth 20 pts. as usual. It prepares
for the first problem to come on the final exam about classifying languages. But owing to



current TopHat limitations it has stricter terms about (no) partial credit than the problem
on the final will have in instances analogous to Q2-Q6 in particular.

(2) Say that a state ¢ in an NFA N = (Q, %, 9, s, I') is “live” if there is a string y € ¥* and
state r € F' such that N can process y from ¢ to r. To keep things simple, we will suppose
that N has no e-arcs.

(a) Give a decision procedure to identify all live states. Pseudocode like in lectures and the
text is fine, but your code sketch must include one while-loop (or for-loop) with a flag
for change/no-change. (12 pts.)

(b) Briefly explain why the NFA N’ obtained by deleting all non-live states than s (note:
there may be ones that aren’t so obviously a “dead state”) and their incoming edges is
equivalent to N, i.e., L(N') = L(N). (If s is not live then N’ has just the rejecting state
s and no arcs. 6 pts.)

(c) Also say ¢ is “reachable” if there is a string that N can process from s to ¢q. Consider
N" obtained by similarly stripping out unreachable states. Then prove that L(N) is
infinite if and only if the graph of N” has a cycle. NB: a self-loop counts as a cycle. (6
pts. for the = part, 3 pts. for <).

(d) Conclude by stating a decision procedure for the decision problem, given an NFA N, is
L(N) infinite? (6 pts., for 30 on the problem)

It must be repeated that you are not allowed to trawl the Internet looking for solutions to
(parts of) this problem. But you are allowed to lift things from the text that may act as
guides—here we ask you to note and cite them as such. If you have had this or a similar
problem in CSE331 or a similar course, please let us know and we will let you use it—again
with citation.

(3) Consider the following decision problem:

INSTANCE: A DFA M = (Q,%,4,s, F) with ¥ = {a, b} and a string w € X*.
QUESTION: Is there a string y € ¥* such that wy is a palindrome and M accepts y?

(a) Give in pseudocode a decision procedure for this problem. (18 pts. For a hint, the most
important machine for you to consider and modify is one not stated in the problem,
namely an NPDA N recognizing the language of palindromes. Note that y need not
equal w’; you have to consider cases like w = abab and y = a or y = bbaba too.)

(b) What happens if the final condition condition is changed to “M accepts wy?” Tweak
your answer accordingly (6 pts., for 24 on the problem and 74 on the set)

For a footnote, one could ask what happens when M is allowed to be a DPDA. Then I right
now do not know whether the problem is decidable. Some questions like that, most notably
whether two DPDAs accept the same language (EQpppa in the text’s naming scheme), have
taken humanity decades to answer. EQ)pppa was proved decidable after the text was written
and the proof is over 100 journal pages long.



