CSE396 Sample Prelim II (from Spr'19) Spring 2021

Your Prelim II will have the same terms as your Prelim I did: One notes sheet and text recommended, notes OK, Internet for connectivity only, closed neighbors, 70 minutes. Do ALL THREE problems in a format that can be exported to PDF for submission via *CSE Autolab* using the same logistics as homeworks. Please *show all your work*—this may help for partial credit. The exam totals 80 pts., subdivided as shown.

Extra notes that were on the Spr'19 exam: In problem (1), you may assume the alphabet Σ is $\{a, b\}$, and the difference of two languages $A, B \subseteq \Sigma^*$ means $A \setminus B$, which equals $A \cap \tilde{B}$.

(1) $(4 \times 3 = 12 \text{ pts.})$ Multiple Choice.

Please circle the unique best answer or use the fill-in blanks at bottom. Justifications may help for partial credit but are not needed.

- 1. The class of CFLs is closed under
 - (a) Union.
 - (b) Intersection.
 - (c) Complementation.
 - (d) Difference.
- 2. The class of DCFLs is closed under
 - (a) Union.
 - (b) Intersection.
 - (c) Complementation.
 - (d) Difference.
- 3. Given DFAs M_1, M_2 and a CFG G, which problem is not decidable?
 - (a) Whether $L(M_1) = \emptyset$.
 - (b) Whether $L(M_1) = L(M_2)$.
 - (c) Whether $L(M_1) = L(G)$.
 - (d) Whether $L(G) \neq \emptyset$.
- 4. If L is undecidable, then its complement \tilde{L} could be:
 - (a) Regular
 - (b) Context-free.
 - (c) Decidable.
 - (d) Recognizable (i.e., c.e.).

(2) (2 + 6 + 18 + 6 = 32 pts.)

Define E to be the language of strings over $\Sigma = \{a, b\}$ that begin with b and in which every nonempty "block" of a's had odd length. "Block" means a *maximal* substring of a's, and another way of saying this is that between every b in the string and the next b (or the end of the string), the number of a's is either zero or odd. Examples of strings in E are *babba* and *babaaab*, but not *babbaa* or *babaab*. Define G to be the following context-free grammar: overleaf.

 $S \rightarrow bB \mid bAS$ $A \rightarrow BSb \mid AA \mid ab$ $B \rightarrow a \mid AB \mid BaaS$

- (a) Is $\epsilon \in E$? What about the string b^i , for any $i \ge 1$?
- (b) Find an ambiguous string in L(G) and show two different parse trees for it.
- (c) Prove by the structural induction technique that $L(G) \subseteq E$.
- (d) Suppose we add the rule $S \to b$. Show that this makes the new grammar G' unsound for E by giving a *leftmost* derivation in G' of a string $x \notin E$.
- (3) (12 + 12 + 12 = 36 pts.) (Last problem on the exam)

Define $L_1 = \{a^i b^j c^k : j \le i, i, j, k \ge 1\}$ and $L_2 = \{a^i b^j c^k : j \le k, i, j, k \ge 1\}.$

- (a) Design a CFG G such that $L(G) = L_1 \cup L_2$.
- (b) Prove that $L_1 \cap L_2$ is not a CFL.
- (c) Sketch in prose a 2-tape TM M such that $L(M) = L_1 \cap L_2$. You must give enough detail about character-level operations to indicate where and why your M is not a pushdown automaton.

END OF EXAM.