
CSE396: Intro Theory of Computation, Spring 2026
 
[show course website, Piazza, and TopHat]
[do unofficial test of attendance-taking on TopHat]
[go over syllabus and course rules]
[talk about textbook]
 
 
Brief Course Overview

1. Formal Languages as "Math With Symbols" (this week).
2. Finite Automata and Regular Expressions (this month into next, long Sipser ch. 1).
3. Context-Free Grammars and Languages (next month, Sipser ch. 2 but not section 2.4).
4. Computability and Undecidability (April, Sipser chs. 3--5 skimming section 5.2).
5. A bit of Computational Complexity (May, Sipser ch. 7 and one page of ch. 9 for a proof).

 
The very last lectures will be on the Cook-Levin Theorem for showing NP-hardness and NP-
completeness. It is possible that I will cut down some of the CFG content and do more with Boolean 
circuits in the run-up to the Cook-Levin proof.
 
 
Formal Languages
Which comes first, the number or the symbol?  Let us multiply
 
    47

 x  43

-------

   141

  188_

-------

  2021

 
That year wa the product of two nearly-equal primes, both congruent to 3 modulo 4.  This makes 2021 
into a Blum Integer, and the importance of this to cryptography will also be touched on in the last 
weeks.  Well, 2025 was a perfect square, , but  is comparatively boring since 45 × 45 2026 =  2 × 1013

 is prime.  Staying with 2021, would you say the operations above are numeric or symbolic?  What 1013

if we do this in binary notation?
 
           101111

        x  101011

      -----------

                        101111
          101111

        101111

 

 

https://en.wikipedia.org/wiki/Blum_integer


      101111

      -----------

      11111100101

 
Maybe this feels more symbolic.  In my youth there was more a balance between "analog" and "digital" 
as monikers for computing, but that's all gone digital.  (Music, however, has made a large move back to 
analog.)  In any event, this course handles the symbolic side.
 
This begins with defining the alphabet of symbols used.  The alphabet for binary arithmetic, and binary 
strings in general, is .  In many ways, this is the only alphabet we formally need to consider.  The 0, 1{ }

alphabet  will have a different "feel"---I will use it more often than the text because it feels like a, b{ }

using words, and some examples will put other letters  to good use.  But formally,  c, d, e, … a, b{ }

works just like  if you think ,  (or vice-versa).  Moreover, to a computer, all letters on 0, 1{ } a =  0 b =  1

our keyboards get translated to binary strings, variously by the ASCII code, Unicode, or UTF-8, which is 
an amalgam of the two.  
 
A motive for making alphabets more general is to incorporate tokens as basic units.  Tokens are often 
notated inside angle brackets  and that is exactly what this paper does.  For example, on the ⟨… ⟩

bottom right of its second page, it refers to the "string"
 
                                             < , S> < , S> < , I> < , I> < , R>ti ti ti ti ti

 
where each " " is a person and S,I,R are the epidemiological labels for people who are in the state of ti
being Susceptible, Infected, or Recovered.  This is "meta"---we have symbols inside our symbols, but 
the point is that the (Nondeterministic) Finite Automaton defined in the paper takes these tokens as its 
basic inputs.  
 
So we want to think abstractly of a general alphabet---and the convention is to use a capital Greek  to 𝛴

denote one.  This may be confusing---  usually stands for a sum, and we may have a few of those too.  𝛴

But we use a limited set of letters in our notation, and  took hold---as exemplified in the same paper.  𝛴

Most of the time we will have  or , however.𝛴 =  0, 1{ } 𝛴 =  a, b{ }

 
Definition: A string is a sequence of characters.  
 
In C++ terms, string = list<char>, whereas alphabet = set<char>. 
 
 
Definition: A set of strings is called a language.  language = set<list<char> >
 
This is "barebones"---it's like saying the English language equals the set of words you can play in the 
game Scrabble.  Chapter 2 on context-free grammars will be all about defining rules on top of words 
and the kinds of more-human-like languages you can get as a result.
 

 

 

https://www.ijert.org/research/finite-automata-for-sir-epidemic-model-IJERTV2IS90886.pdf


Here are some pertinent examples:
 

• BAL stands for the language of balanced-parentheses strings.  It has .  Well, OK, 𝛴 =   ,   { ( ) }

the curly braces and comma are part of mathematical notation for sets; the '(' and ')' are the 
actual characters.  

– Some strings in BAL:    ,    ,    ,    ( )    ( ( ) )      ( ) ( ( ) )        ( ( ) ( ( ) ) )

– Some strings not in BAL:    ,    ,    . ) (   ( ( )     ( ) ( ) )

– Is the empty string in BAL?
• PAL stands for the language of strings that read the same forwards and backwards, i.e., 

palindromes.  The idea applies to whatever alphabet you use.
– Some strings in PAL:   ,   ,  "amanaplanacanalpanama"abba 10101

– Some strings not in PAL:  ,  ,  "A man, a plan, a canal: Panama."baba 101001

– Is the empty string in PAL?  (Yes)
• The set of prime numbers is not a language in our formal sense.  In C++ terms it has type 
set<int> not set<string>.  But if we specify it as the set of standard binary representations of 
prime numbers without leading zeroes, then we get the formal language PRIMES = 

.10, 11, 101, 111, 1011, 1101,  10001,  10011,  10111,  11101,  11111, …{ }

 
The empty language, like any empty set, is denoted by .  The empty string will be denoted by  ∅ 𝜖

(Greek lowercase epsilon) in this course.  [Other sources---including the above paper---use  (Greek 𝜆

lowercase lambda) for the empty string.  I will often mention notational variants in sources you may see 
on the Web.  Color codes: bold black for notation and terms that are completely standard, but orange 
for notation that varies between sources or names and terms I've made up.]
 
What's the difference between  and ?  First, the former is a set, the other a string.  Second, we ∅ 𝜖

will see the difference is like that between the numerical 0 and 1 as numbers.  Observe:
 

• The concatenation  of a string  and a char  is the string .  For example, x ⋅ c x c xc

.  An English rendering of  is "and then".aab ⋅ a =  aaba ⋅

• The concatenation  of strings  and  is the string .  E.g., .x ⋅ y x y xy aab ⋅ aba =  aababa

• This is the same as what you get by "catting on" to  the chars in  one at a time.x y

• If , then  has no chars, so the last point is a no-op.  So:  is a general rule, for y =  𝜖 y x ⋅ 𝜖 =  x

all strings .  Likewise,  is a general rule.  That's how  is like 1.  (Well, this makes  x 𝜖 ⋅ x =  x 𝜖 ⋅

analogous to multiplication, but it's not commutative: .)aab ⋅ aba ≠  aba ⋅ aab
 
To really compare it with , we need to involve  in a language.  So consider: .  This is a set whose ∅ 𝜖 𝜖{ }

only member is a string, so it is a set<string>, which is a language.  Next we need to "lift" the 
concatenation operation up to work between languages.  This needs a definition:
 
Definition 1: Given any two languages  and  (their being "over" the same alphabet  is understood A B 𝛴

here), their concatenation is the language  defined byA ⋅ B

 

 

 



.A ⋅ B =  x ⋅ y :  x ∈ A ∧  y ∈ B{ }

 
An intuition for this is that strings are like streams of data from sensors, and languages  are A, B, …

tests telling whether chunks of data meet respective conditions for being OK.  So a string  passes the z

 test if it consists of a portion  that passes the  test and then a portion  that passes the  test. A ⋅  B x A y B

 Here's a little swervy test of notation: Does ?  The answer is that this is too A ⋅A =  x ⋅ x :  x ∈ A{ }

narrow.  Suppose  represents the condition of being a digit character (\dA =  0, 1, 2, 3, 4, 5, 6, 7, 8, 9{ }

 if you've done string-matching).  Then  should allow any two digits, not just the doubled cases A ⋅A

.  Instead, .00, 11, … , 99 A ⋅A =  x ⋅ y :  x, y ∈ A{ }

 
Having understood that about Definition 1, let us try the "edge cases"  and :B =  ∅ B =  𝜖{ }

 
• A ⋅∅  = x ⋅ y :  x ∈ A ∧  y ∈ ∅  =  x ⋅ y :  x ∈ A ∧  false  =  x ⋅ y :  false  =  ∅{ } { } { }

 
• A ⋅ 𝜖  =  x ⋅ y :  x ∈ A ∧  y ∈ 𝜖  =  x ⋅ 𝜖 :  x ∈ A  =  x :  x ∈ A  =  A.{ } { { }} { } { }

 
Likewise,  for any language , whereas  always.  Intuitively,  says ∅ ⋅A =  ∅ A 𝜖 ⋅A =  A{ } A ⋅∅ =  ∅

that if a sensor at a required stage fails then the whole test series fails.  Whereas,  means that A ⋅ 𝜖{ }

the second condition passes automatically on the heels of the first, without needing (or allowing) any 
more data to be taken.  
 
 
If language = set<string> isn't "up there" enough, there's also the term that a class is a set of 
languages.  The first major example will be the class REG of regular languages.
 
Regular languages are those defined by regular expressions.  Here is just a little preview of what 
those involve---as part of a generally important notice to bear in mind:
 

Lectures in this course are held on T(hur+ue)sdays.
 
The ' ' symbol means "or" here.  Well, if you've already gotten and looked at the textbook, it writes +

instead of  in regular expressions.  When we hit grammars, we will write  instead, and you've ∪ + |

already used one or two of these vertical bars to mean or in a programming language.  But in this case, 
those could get confused with the letters u and i, respectively.  So I wrote .  Which can get confused +

with addition---but hey, "or" is a kind of Boolean addition.
 
There's also an invisible symbol here:  for concatenation again.  This is  analogous to numerical ∙

multiplication, except that it isn't commutative:  is a different string from , even though it would a ⋅ b b ⋅ a
be equal as numbers.  (Well hey, multiplying matrices isn't commutative either.)  To be super-pedantic, 
the regular expression in light purple is T (h u r + u e) s d a y s . The main reason to write ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 and  is that the distributive law holds: + ⋅

 

 

 



,  and on the right,  .a ⋅ b + c  =  a ⋅ b +  a ⋅ c( ) a + b ⋅ c =  a ⋅ c +  b ⋅ c( )

 
It holds with languages too:  and .  With sets, we A B ∪  C  =  AB ∪  AC( ) A ∪  B C =  AC ∪  BC( )

really do want you to write  not .  Later we will use letters and also Greek letters  to ∪ + r, s, t, … 𝛼, 𝛽, 𝛾

stand for regular expressions, which stand for languages...and then you can use either symbol.
 
You can also involve the empty string  in regular expressions.  We could try to be even more clever 𝜖

and write

T (h ) u (r+e) s d a y s.⋅ +𝜖 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 
This matches the words "Tuesdays" and "Thursdays" like before.  But the defect is that it also matches 
the excess strings "Tursdays" and "Thuesdays".  Because it allows excess strings that don't conform to 
the target concept of "days of the week", we will say this regular expression is unsound.  Well, if "days 
of the week" is the exact specification we want to capture, the original regular expression fails that in a 
different way: it fails to match the other five days of the week.  We will say it is not comprehensive for 
the target concept.  We will define the positive sides of these terms, sound and comprehensive, later.  
 
 
[If even more time allows, tell the story at https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-
emptiness/ .  Wherever the break comes, the rest will be part of notes for the week 2 recitations.  
 

 

 

https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/
https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/

