
CSE396, Spring 2026, Week 2 Thu.

Finite Automata and Languages

Suppose we want to accept only those binary strings that end in . We have .x 1 𝛴 = 0, 1{ }

Is that the same as saying does not end in ? No: the empty string does not end in but that x 0 𝜖 0

doesn't mean it ends in . 1

Designing a finite automaton is sometimes like playing "Musical Chairs". Any char that we read might
be the end of the string. If the char is a , we have to be at the accepting "chair". So we make two 1

states, one saying the previous char read was a , the other a . We will also tentatively make the start 1 0

state separate, saying no char has been read yet.

By popular demand, the table for : where , M1 M = Q, 𝛴, 𝛿, s, F1 () Q = s, Last0, Last1{ }

, the start state is literally called , , and is defined by𝛴 = 0, 1{ } s F = Last1{ } 𝛿 : Q × 𝛴 Q→

, and 𝛿 s, 0 = Last0, 𝛿 s, 1 = Last1, 𝛿 Last0, 0 = Last0, 𝛿 Last0, 1 = Last1, 𝛿 Last1, 0 = Last0() () () () ()

. 𝛿 Last1, 1 = Last1()

Or in my own preferred style as a set of instructions,
𝛿 = s, 0, Last0 , s, 1, Last1 , Last0, 0, Last0 , Last0, 1, Last1 , Last1, 0, Last0 , Last1, 1, Last1{() () () () () ()}

But on homeworks, it is much more important to give a well-commented arc-node diagram than to
give the tables like the text does (without comments!). One thing that also helps is to re-state the target
language in various ways. So how else can we express "strings that end in 1"?

.L = w1 : w ∈ 0, 11 { }*

What does " mean? The superscript star means "zero or more". Zero or more of what? 0, 1 "{ }* *

Chars. What does "zero chars" mean? It means the empty string . So what this says is that can be 𝜖 w

any binary string whatever, which makes stand for any binary string that ends in a .w1 1

s

Last0

Last1

0

1

Start

1

1

0

0

Not
Last1

Last1

1

1

0
Start

0

In fact, the start
state and Last0
are equivalent in
that both are not
in and both goF
to the same state
on the same char.
Fusing them gives:

M = 1

M' = 1

State label says
last char read.

We could also just write directly . The comma is then read "or". But more often in L = 0, 1 ⋅ 11 { }*

programming, especially scripting, we write a vertical bar (or two) to mean "or": . Well, L = 0|1 11 ()*

the text writes , which corresponds to "OR" the way is a way of expressing AND logic in sets. So ∪ ∩

the text would write . That looks fine when typed, but in handwriting the tends to L = 0 ∪ 1 ⋅ 11 ()*
∪

close up and look like , while always looks like . So I will use a third style one can find online and 0 | 1

write for "or", so . (But a superscript instead of will mean "one or more.") Once + L = 0 + 1 11 ()* + *

the choice and understanding are settled, all of these are visually clear: it must end in and what 1

comes beforehand can be anything.

A Second Language

Now, how about the second from last char in is a ? How can we express this more L = x :2 { x 1}

compactly and visually? We could say . But that leaves out strings that end in , which are 0, 1 10{ }* 11

good too. Now, by the way, the string " " is no longer good: it needs at least 2 chars. So we can write 1

(using the text's style):∪

. Or we can group it asL = 0, 1 10 ∪ 0, 1 112 { }* { }*

.L = 0, 1 10 ∪ 112 { }*()

We can even group it as but maybe that is "too cute". If we don't want to mix braces 0, 1 1 0 ∪ 1{ }* ()

and parens, we can write it as . "My way": . L = 0 ∪ 1 ⋅ 10 ∪ 112 ()* () 0 + 1 10 + 11()*()

How about a DFA now? Can we do it with a 2-state machine, since after all the language is
conceptually almost as simple as is? Ummm...no. We have to track the last 2 chars read. We can L1

say something up-front about the starting condition: If the last two chars read were both , they give us 0

no help toward a (if the "music stops" now or after the next char, we lose). Hence, that is really the 1

same condition as starting from scratch. Starting with a gives no help, while starting with is just like 0 1

the last two chars being . Thus we can make "Last00" the start state and proceed accordingly. Let's 01

abbreviate that to where means "read" and label the other states , , and . The latter r00 r r01 r10 r11

two are our accepting states. Once we lay down the states and the starting and final conditions, the
arcs should be easy to fill in:

In lecture I did so:

Moral: The left-hand side is well-commented enough that it would be full credit. Whereas, I've seen
people write down a table like the following without even saying what the states in are:F

State \ char 0 1

1 1 2

2 3 4

3 1 2

4 3 4

Just from that alone, I would have no idea what is going on. Moral: "States are States of Mind."

r00 r01

r10 r11

Start

State label gives last two chars read.

0

1

0

1

1

1

0

0

M : 2

Third From Last Char

Now how about ? Among many ways L = x ∈ 0, 1 : the third char from the right end is a 13 { }*

to write this more symbolically but visually we can give:

, which equals .L = 0 ∪ 1 100 ∪ 101 ∪ 110 ∪ 1113 ()*() 0 ∪ 1 1 0 ∪ 1()* ()2

The superscript doesn't mean squaring. It means exactly two occurrences of 0 or 1. If I wrote it as 2

, the and still wouldn't be numerical. There is, however, a symbolic L = 0 + 1 1 0 + 13 ()* ()2 + 2

resemblance to the numerical operations. For one, we can imitate how multiplies out:0 + 1()2

.0 + 1 = 0 ⋅ 0 + 0 ⋅ 1 + 1 ⋅ 0 + 1 ⋅ 1 = 00 + 01 + 10 + 11()2

So long as you realize that the concatenation is not commutative, and that doesn't equal zero, ⋅ 0 ⋅ 1

you can use analogies with rules of ordinary algebra. Chief among them is the distributive law. That's
what allows one to write, e.g.,

.1 ⋅ 00 + 1 ⋅ 01 + 1 ⋅ 10 + 1 ⋅ 11 = 1 ⋅ 00 + 01 + 10 + 11 = 1 0 + 1() () ()2

Now for the machine. Alas, we will prove in a few weeks that it cannot be built with fewer than 8 states--
-that one really needs to track the possibilities for the last 3 chars read. So:2 = 83

r000 r001

r010 r011

Start

State label gives last three chars read, with leading 0s ignorable.

r100 r101

r110 r111

0

1

1

1

0

1

0

0

M = 3

x = 00111000

The arcs filled in may make you think this is going to be a nice cube, but after these it gets pretty
messy. The fact that this is not a nice cube also hints that this is not really a Cartesian product
situation. It is also somehow lacking the clean visual impact of the expression , or in 0 ∪ 1 1 0 ∪ 1()* ()2

my terms, . Is there a kind of machine to reflect this?0 + 1 1 0 + 1()* ()2

The NFA Idea

Note that if you are in state and the music doesn't stop---that is, you get another char---then you q3

can't go anywhere. The computation "crashes" and you lose---even though is an accepting state. q3

The major story is what goes down at the start state if you get a . You have the option to stay at start 1

or make a "leap of faith" by going to : banking on there being exactly 2 more chars. This is q1

nondeterminism at state on char . We have where:q0 1 N = Q, 𝛴, 𝛿, s, F()

• Q = q , q , q , q{ 0 1 2 3 }

• ,s = q0

• , andF = q{ 3 }

• .𝛿 = q , 0, q , q , 1, q , q , 1, q , q , 0, q , q , 1, q , q , 0, q , q , 1, q{(0 0) (0 0) (0 1) (1 2) (1 2) (2 3) (2 3)}

The two highlighted tuples have the same source state and char but different destination states. Thus
the relation does not define a function from to . For this reason, we cannot unambiguously 𝛿 Q × 𝛴 Q
execute the machine like we could before. But as a specification, it makes visual sense of what the
language is---maybe more sense than the crazy twisty half-finished cube . M3

[It is possible I may get time to give the formal definition of NFAs --- allowing -transitions too --- and 𝜖

their computations, which in 2021 started the 4th lecture.]

0, 1

0, 1 0, 11Start
q0

q1 q2 q3

N =

