CSE396, Spring 2026, Week 2 Thu.
Finite Automata and Languages

Suppose we want to accept only those binary strings x thatend in 1. We have X = {0, 1}.
Is that the same as saying x does not end in 0? No: the empty string € does not end in 0 but that
doesn't mean it ends in 1.

Designing a finite automaton is sometimes like playing "Musical Chairs". Any char that we read might
be the end of the string. If the char is a 1, we have to be at the accepting "chair". So we make two
states, one saying the previous char read was a 1, the other a 0. We will also tentatively make the start
state separate, saying no char has been read yet.

M, = @' In fact, the start
Start state and Last0
are equivalent in
1 that both are not
in F and both go
to the same state

on the same char.
Fusing them gives:

State label says
last char read.

By popular demand, the table for M1: M; = (Q, X, 6, s, F) where Q = {s, Last0, Last1},
2 = {0, 1}, the start state is literally called s, F = {Lastl},and6: Q X X — Qs defined by

0(s,0) = Last0, 6(s, 1) = Last1, 6(Last0, 0) = Last0, 6(Last0,1) = Last1, 6(Last1,0) = Last0, and
0(Last1,1) = Last1.

Or in my own preferred style as a set of instructions,
0 ={(s,0, Last0), (s, 1, Last1), (Last0, 0, Last0), (Last0, 1, Last1), (Last1, 0, Last0), (Last1, 1, Last1)}

But on homeworks, it is much more important to give a well-commented arc-node diagram than to
give the tables like the text does (without comments!). One thing that also helps is to re-state the target
language in various ways. So how else can we express "strings that end in 1"?

L = {wl:w e (0,1)}.

What does "{0, 1}*" mean? The superscript star * means "zero or more". Zero or more of what?
Chars. What does "zero chars" mean? It means the empty string €. So what this says is that w can be
any binary string whatever, which makes w1 stand for any binary string that ends in a 1.

We could also just write directly L; = {0,1}"-1. The comma is then read "or". But more often in
programming, especially scripting, we write a vertical bar (or two) to mean "or": L; = (0|1)*1. Well,
the text writes U, which corresponds to "OR" the way N is a way of expressing AND logic in sets. So
the text would write L;y = (0U 1)*-1. That looks fine when typed, but in handwriting the U tends to
close up and look like 0, while | always looks like 1. So | will use a third style one can find online and
write + for "or", so Ly = (0 + 1)*1. (But a superscript * instead of * will mean "one or more.") Once

the choice and understanding are settled, all of these are visually clear: it must end in 1 and what
comes beforehand can be anything.

A Second Language

Now, how about L, = {x: the second from last char in x is a 1}? How can we express this more
compactly and visually? We could say {0, 1}*10. But that leaves out strings that end in 11, which are
good too. Now, by the way, the string "1" is no longer good: it needs at least 2 chars. So we can write
(using the text's U style):

L, {0,1}*10 U {0, 1}*11. Or we can group it as

L, = {0,1}(10 U 11).

We can even group it as {0, 1}*1(0 U 1) but maybe that is "too cute". If we don't want to mix braces
and parens, we can writeitas L, = (0 U 1)*-(10 U 11). "My way": (0 + 1)*(10 + 11).

How about a DFA now? Can we do it with a 2-state machine, since after all the language is
conceptually almost as simple as L1 is? Ummm...no. We have to track the last 2 chars read. We can
say something up-front about the starting condition: If the last two chars read were both 0, they give us
no help toward a 1 (if the "music stops" now or after the next char, we lose). Hence, that is really the
same condition as starting from scratch. Starting with a 0 gives no help, while starting with 1 is just like
the last two chars being 01. Thus we can make "Last00" the start state and proceed accordingly. Let's
abbreviate that to 00 where r means "read" and label the other states 701, 10, and r11. The latter
two are our accepting states. Once we lay down the states and the starting and final conditions, the
arcs should be easy to fill in:

M, : State label gives last two chars read.

M{/m{ﬁj {/adﬂ_lx\'|

N N

= SRy
NN N N 0

In lecture | did so:

M, : State label gives last two chars read.

Statt” 0 1 01

Moral: The left-hand side is well-commented enough that it would be full credit. Whereas, I've seen
people write down a table like the following without even saying what the states in F are:

State \ char | 0 1
1 1 2
2 3 4
3 1 2
4 3 4

Just from that alone, | would have no idea what is going on. Moral: "States are States of Mind."

Third From Last Char

Now how about Ly = {x € {0,1}": the third char from the right end is a 1}? Among many ways

to write this more symbolically but visually we can give:
L3 = (0U1)*(100U 101 U 110 U 111), which equals (0 U 1)*1(0 U 1)2.

The superscript 2 doesn't mean squaring. It means exactly two occurrences of 0 or 1. If | wrote it as
L3 = (0+1)*1(0 + 1)?, the + and 2 still wouldn't be numerical. There is, however, a symbolic
resemblance to the numerical operations. For one, we can imitate how (0 + 1)2 multiplies out:

0+1)* =0-0+0-1+1-0+1-1 = 00+01+10+11.

So long as you realize that the concatenation - is not commutative, and that O - 1 doesn't equal zero,
you can use analogies with rules of ordinary algebra. Chief among them is the distributive law. That's
what allows one to write, e.g.,

(1-00+1-01+1-10+1-11) = 1-(00+01 +10+11) = 1(0 + 1)2.

Now for the machine. Alas, we will prove in a few weeks that it cannot be built with fewer than 8 states--
-that one really needs to track the 23 =38 possibilities for the last 3 chars read. So:

State label gives last three chars read, with leading Os ignorable.

r011

1

COOl x = 00111000

The arcs filled in may make you think this is going to be a nice cube, but after these it gets pretty
messy. The fact that this is not a nice cube also hints that this is not really a Cartesian product

situation. It is also somehow lacking the clean visual impact of the expression (0 U 1)*1(0 U 1)2, or in
my terms, (0 + 1)*1(0 + 1)2. Is there a kind of machine to reflect this?

The NFA Idea
0,1

(]

Start - 1 @ 0,1 @ 0,1

Note that if you are in state g5 and the music doesn't stop---that is, you get another char---then you

N =

can't go anywhere. The computation "crashes" and you lose---even though g3 is an accepting state.
The major story is what goes down at the start state if you get a 1. You have the option to stay at start
or make a "leap of faith" by going to g;: banking on there being exactly 2 more chars. This is
nondeterminism at state gy on char 1. We have N = (Q, X, 6, s, F) where:

Q= {510,511,6]21113}

(SRS o]

0>
= {g3}, and
{(‘70/ 0/ QO); (5]0/ 1/ 5]0)/ (qO/ 1/ 5]1)/ (171; 0/ 112)/ (ﬂlz 1/ QZ)/ (Qz; 0/ 5]3); (qZI 1/ q3)}

The two highlighted tuples have the same source state and char but different destination states. Thus
the 6 relation does not define a function from Q X X to Q. For this reason, we cannot unambiguously
execute the machine like we could before. But as a specification, it makes visual sense of what the
language is---maybe more sense than the crazy twisty half-finished cube M.

[It is possible | may get time to give the formal definition of NFAs --- allowing e-transitions too --- and
their computations, which in 2021 started the 4th lecture.]

