
CSE396, Spring 2026, Week 2 Thu.  
 
Finite Automata and Languages
 
Suppose we want to accept only those binary strings  that end in .  We have .x 1 𝛴 =  0, 1{ }

Is that the same as saying  does not end in ?  No: the empty string  does not end in  but that x 0 𝜖 0

doesn't mean it ends in .  1

 
Designing a finite automaton is sometimes like playing "Musical Chairs".  Any char that we read might 
be the end of the string.  If the char is a , we have to be at the accepting "chair".  So we make two 1

states, one saying the previous char read was a , the other a .  We will also tentatively make the start 1 0

state separate, saying no char has been read yet.
 

 
By popular demand, the table for :  where , M1 M  =  Q, 𝛴, 𝛿, s, F1 ( ) Q =  s, Last0, Last1{ }

, the start state is literally called , , and  is defined by𝛴 =  0, 1{ } s F =  Last1{ } 𝛿 :  Q ×  𝛴  Q→

 
, and 𝛿 s, 0 = Last0, 𝛿 s, 1 = Last1, 𝛿 Last0, 0 = Last0,  𝛿 Last0, 1 = Last1,  𝛿 Last1, 0 = Last0( ) ( ) ( ) ( ) ( )

.  𝛿 Last1, 1 = Last1( )

 
Or in my own preferred style as a set of instructions,
𝛿 = s, 0, Last0 , s, 1, Last1 , Last0, 0, Last0 , Last0, 1, Last1 , Last1, 0, Last0 , Last1, 1, Last1{( ) ( ) ( ) ( ) ( ) ( )}

 
But on homeworks, it is much more important to give a well-commented arc-node diagram than to 
give the tables like the text does (without comments!).  One thing that also helps is to re-state the target 
language in various ways.  So how else can we express "strings that end in 1"?
 

.L  =  w1 :  w ∈  0, 11 { }*

 
What does "  mean?  The superscript star  means "zero or more".  Zero or more of what?  0, 1 "{ }* *

Chars.  What does "zero chars" mean?  It means the empty string .  So what this says is that  can be 𝜖 w

any binary string whatever, which makes  stand for any binary string that ends in a .w1 1
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are equivalent in
that both are not
in  and both goF
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We could also just write directly .  The comma is then read "or".  But more often in L  =  0, 1 ⋅ 11 { }*

programming, especially scripting, we write a vertical bar (or two) to mean "or": .  Well, L  =  0|1 11 ( )*

the text writes , which corresponds to "OR" the way is a way of expressing AND logic in sets.  So ∪ ∩

the text would write .  That looks fine when typed, but in handwriting the tends to L  =  0 ∪ 1 ⋅ 11 ( )*
∪

close up and look like , while  always looks like .  So I will use a third style one can find online and 0 | 1

write  for "or", so .  (But a superscript  instead of  will mean "one or more.")  Once + L  =  0 + 1 11 ( )* + *

the choice and understanding are settled, all of these are visually clear: it must end in  and what 1

comes beforehand can be anything.
 
 
A Second Language
 
Now, how about  the second from last char in  is a ?  How can we express this more L  =  x :2 { x 1}

compactly and visually?  We could say .  But that leaves out strings that end in , which are 0, 1 10{ }* 11

good too.  Now, by the way, the string " " is no longer good: it needs at least 2 chars.  So we can write 1

(using the text's style):∪  

 
.                            Or we can group it asL  =  0, 1 10 ∪  0, 1 112 { }* { }*

 
.L  =  0, 1 10 ∪  112 { }*( )

 
We can even group it as  but maybe that is "too cute".  If we don't want to mix braces 0, 1 1 0 ∪  1{ }* ( )

and parens, we can write it as .  "My way": .  L  =  0 ∪  1 ⋅ 10 ∪  112 ( )* ( ) 0 + 1 10 + 11( )*( )

 
How about a DFA now?  Can we do it with a 2-state machine, since after all the language is 
conceptually almost as simple as  is?  Ummm...no.  We have to track the last 2 chars read.  We can L1

say something up-front about the starting condition: If the last two chars read were both , they give us 0

no help toward a  (if the "music stops" now or after the next char, we lose).  Hence, that is really the 1

same condition as starting from scratch.  Starting with a  gives no help, while starting with  is just like 0 1

the last two chars being .  Thus we can make "Last00" the start state and proceed accordingly.  Let's 01

abbreviate that to  where  means "read" and label the other states , , and .  The latter r00 r r01 r10 r11

two are our accepting states.  Once we lay down the states and the starting and final conditions, the 
arcs should be easy to fill in:
 

 

 



In lecture I did so:
 

 
Moral: The left-hand side is well-commented enough that it would be full credit.  Whereas, I've seen 
people write down a table like the following without even saying what the states in  are:F
 

State \ char 0 1

1 1 2

2 3 4

3 1 2

4 3 4

 
Just from that alone, I would have no idea what is going on.  Moral: "States are States of Mind." 
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Third From Last Char
 

Now how about ?  Among many ways L  =  x ∈  0, 1 :  the third char from the right end is a 13 { }*

to write this more symbolically but visually we can give:
 

, which equals .L  =  0 ∪ 1 100 ∪ 101 ∪ 110 ∪ 1113 ( )*( ) 0 ∪ 1 1 0 ∪ 1( )* ( )2

 
The superscript  doesn't mean squaring.  It means exactly two occurrences of 0 or 1.  If I wrote it as 2

, the  and  still wouldn't be numerical.  There is, however, a symbolic L  =  0 + 1 1 0 + 13 ( )* ( )2 + 2

resemblance to the numerical operations.  For one, we can imitate how  multiplies out:0 + 1( )2

 
.0 + 1  =  0 ⋅ 0 +  0 ⋅ 1 +  1 ⋅ 0 +  1 ⋅ 1 =  00 + 01 + 10 + 11( )2

 
So long as you realize that the concatenation  is not commutative, and that  doesn't equal zero, ⋅ 0 ⋅ 1

you can use analogies with rules of ordinary algebra.  Chief among them is the distributive law.  That's 
what allows one to write, e.g., 
 

.1 ⋅ 00 + 1 ⋅ 01 + 1 ⋅ 10 + 1 ⋅ 11  =  1 ⋅ 00 + 01 + 10 + 11  =  1 0 + 1( ) ( ) ( )2

 
Now for the machine.  Alas, we will prove in a few weeks that it cannot be built with fewer than 8 states--
-that one really needs to track the  possibilities for the last 3 chars read.  So:2  =  83
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The arcs filled in may make you think this is going to be a nice cube, but after these it gets pretty 
messy.  The fact that this is not a nice cube also hints that this is not really a Cartesian product 
situation.  It is also somehow lacking the clean visual impact of the expression , or in 0 ∪ 1 1 0 ∪ 1( )* ( )2

my terms, .  Is there a kind of machine to reflect this?0 + 1 1 0 + 1( )* ( )2

 
 
The NFA Idea

 
Note that if you are in state  and the music doesn't stop---that is, you get another char---then you q3

can't go anywhere.  The computation "crashes" and you lose---even though  is an accepting state.  q3

The major story is what goes down at the start state if you get a .  You have the option to stay at start 1

or make a "leap of faith" by going to : banking on there being exactly 2 more chars.  This is q1

nondeterminism at state  on char .  We have  where:q0 1 N =  Q, 𝛴, 𝛿, s, F( )

 
• Q =  q , q , q , q{ 0 1 2 3 }

• ,s =  q0

• , andF =  q{ 3 }

• .𝛿 =  q , 0, q , q , 1, q , q , 1, q , q , 0, q , q , 1, q , q , 0, q , q , 1, q{( 0 0) ( 0 0) ( 0 1) ( 1 2) ( 1 2) ( 2 3) ( 2 3)}

 
The two highlighted tuples have the same source state and char but different destination states.  Thus 
the  relation does not define a function from  to .  For this reason, we cannot unambiguously 𝛿 Q ×  𝛴 Q
execute the machine like we could before.  But as a specification, it makes visual sense of what the 
language is---maybe more sense than the crazy twisty half-finished cube .  M3

 
[It is possible I may get time to give the formal definition of NFAs --- allowing -transitions too --- and 𝜖

their computations, which in 2021 started the 4th lecture.]
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