
CSE396 Lecture Tue. 1/27: Deterministic Finite Automata
 
We will give the dry formal definition before trying to liven it up in a few ways.  Note I will have a few 
cosmetic differences from the text.
 
A deterministic finite automaton (DFA) is a 5-tuple  where:M =  Q, 𝛴, 𝛿, s, F( )

•  is a finite set of states.Q

•  is a finite alphabet.𝛴

• , a member of , is the start state.   [Text says .]s Q q0

• , a subset of , is the set of desired final states, also called accepting states.F Q

•  is a function from  to .  Arguments to  are pairs .  Outputs are states .𝛿 Q ×  𝛴 Q 𝛿 q, c( ) r
 
This "tuple" style of definition was introduced in the 1930s by French mathematicians writing under the 
fictional name Nicolas Bourbaki.  A textbook by John Martin which we used before Mike Sipser's text 
came out made a joke that if you readily understand definitions like that, you muct be a mathematician.  
What I think it means, however, is that the Bourbakists were trying to do object-oriented programming 
before computers were invented.  We can render the definition as:
 
class DFA {

   set<State> Q;

   set<char> Sigma;

   State s;                        //start state

   set<State> F;                   //accepting states

   State delta(State p, char c);   //is this sensible?

}

 
Indeed, in the Turing Kit software---written in Java by Mark Grimaldi while a student in this course in 
1997---there is such a class.  One change needed in "delta", however, motivates ways in which C# and 
Scala (among others) veered off from the original Java.  As things stand above with  delta, it is a class 
method --- which makes it the same function for every DFA instance.   It needs to be an instance 
method.  In C++, one could do this "primitively" by making a pointer-to-member function field:
 
   State (*delta)(State p, char c);   

 
Or, more cleanly (but also more fussily), one can define a separate function-object class, say Delta, 
with a method apply(State p, char c), and have Delta delta; be the class field.  However, I 
will favor a third way that harmonizes better with the upcoming definition of NFAs and reflects the idea 
of a program being a set of instructions.  The abstract fact is that every function  can be identified with f

the set of ordered pairs  such that .  The delta function in this case has two arguments, a, b( ) f a  =  b( )

so we get ordered triples instead of pairs.  We can treat these triples as instance data by writing:
 
   set<triple<State, char, State> > delta; 

 

 



 
Every DFA instance will then automatically have its own set.  Thus I prefer the definition of DFA to 
specify:
 

• , the set of instructions, aka. tuples, is a subset of .  𝛿 Q ×  𝛴  ×  Q( )

• In a DFA, for every  and , there is a unique  such that .p ∈  Q c ∈  𝛴 q ∈  Q p, c, q  ∈  𝛿( )

 
Relaxing the last clause will define an NFA ("without -arcs").  Another reason to think of instructions is 𝜖

how the machines look graphically:
 

 
There is a nice web applet for drawing DFAs, http://madebyevan.com/fsm/ by Evan Wallace, but it does 
not execute the machines you draw.  That's where the Turing Kit comes in.
 
Before we go to the demo, one further remark about design principles.  The definition says  is a set of Q
"states" without saying what those are, and my Java/C++ mockup code left State undefined.  The text 
first exemplifies states as being observable conditions of a machine (an automatic door), but we will 
often want to think in terms of internal "states of mind" while processing a stream of data.  Much more 
than any text I know, I want every "state" to have a comment or name signifying its purpose, much like 
commenting a line of code.  The student who programmed the Turing Kit agreed wholeheartedly---its 
most overt difference from other machine apps one can find is the rich naming and tagging facility.
 
 
Examples of DFAs
 
(Light bulbs and switches from http://clipart-library.com/free/light-bulb-clipart-transparent.html)

 

 

p qc Self-loops are possible: p c

p, c, p( )p, c, q( )

A B C

1 2

We want  to be the set of streams of actions over the day that, assuming both lights wereL
initially off, leave them both off.  What should be the alphabet for these actions?

Each switch is a toggle;
switch B flips both bulbs.

What should the states of the system be?  Include 8 switch combos or just the lights?

http://madebyevan.com/fsm/


 

 
The DFA  is the "Cartesian Product for AND" of the DFA  tracking light bulb 1 and the DFA  M12 M1 M2

tracking light bulb 2.  The set of ordered pairs {(1off,2off), (1off,2on),(1on,2off),(1on,2on)} is the ordinary 
Cartesian product of the set {1off,1on} of states of bulb 1 and the set {2off,2on} for bulb 2. 
 
[Cartesian products come later in the text after regular expressions are defined, and more will be said 
about them either in lecture or week-3 recitations---including notes at the end here.]
 
----------------------------------------------------------
 
[Here the Turing Kit demo worked on the first try.  I used it for the rest of the lecture---including a 
preview example of a Turing machinr.  On a Windows PC it now seems that no setup is required at all: 
just unzip the .jar file linked from the course webpage (no need to bother with the setup instructions 
link now), navigate your comamnd line to it, and enter the one command 
 
java -cp TKIT70.jar Main 
 
Then load DragonSL.tmt to see the first demo machine and do View → Auto Resize to work 
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around a window-sizing bug.  Use of the Turing Kit software is strictly optional---it even supports 
printing machine diagrams natively, but its Postscript job handling has been wonky in the past.  You can 
of course just take a snip or screenshot of any machine you design for HW and just paste it in to the file 
for the rest of your assignment.]
 
 
Added for Recitation:
How do we get  from  and ?  Old notes with the general formula: A goes across and C down M12 M1 M2

now, and we'll call the new machine :M3

The new machine starts up in the state (1off,2off).  If switch A is flipped, it goes to the state
 
𝛿 ((1off,2off),A) = (𝛿 (1off,A),𝛿 (2off,A)) = (1on,2off)3 1 2

𝛿 ((1on,2off),B) = (𝛿 (1on,B),𝛿 (2off,B)) = (1off,2on)3 1 2

𝛿 ((1off,2on),C) = (𝛿 (1off,C),𝛿 (2on,C)) = (1off,2off)3 1 2

 
 
Because the operation is AND, the composite final states are .q , q :  q  ∈  F  AND q  ∈  F{( 1 2) 1 1 2 2 }

[This equals , but this only holds good for AND.]F  ×  F1 2

 
Suppose the desired final condition was that exactly one of the two lights be left on, with the idea that it 
would be safe to leave the building in the evening and the custodian could flick all the lights off.  Then 

 

 



we have : XOR because we want exactly one light to be off, F'  =  3 q , q :  q  ∈  F  XOR q  ∈  F{( 1 2) 1 1 2 2 }

the other on.  If we call the new machine , then we haveM'3

L M'  =  x ∈ A, B, C :  x ∈  L M  XOR x ∈  L M  =  L M  △  L M  ( 3) { }* ( 1) ( 2) ( 1) ( 2)

=  L M  ⧵  L M  ∪   L M  ⧵  L M .( ( 1) ( 2)) ( ( 2) ( 1))

 
 
 

 

 


