
CSE396 Outline Notes

CSE396 Outline Notes
(in process)

Kenneth W. Regan
University at Buffalo (SUNY)

January 29, 2015



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

1. How do Numbers relate to Strings?

197 + 48 = 245.

Needs two “carries” in decimal.

None in binary notation:

11000101 + 00110000 = 11110101 = 255− 10.

We use algorithms to deal even with basic math.

This hints that there’s a lower-level reality.



CSE396 Outline Notes

Some Larger Questions

2. How does an object relate to representations of it?

“This is Not a Pipe.”

echo “But is the char after this clause a pipe?” | head

“Syntax Versus Semantics”



CSE396 Outline Notes

Some Larger Questions

2. How does an object relate to representations of it?

“This is Not a Pipe.”

echo “But is the char after this clause a pipe?” | head

“Syntax Versus Semantics”



CSE396 Outline Notes

Some Larger Questions

2. How does an object relate to representations of it?

“This is Not a Pipe.”

echo “But is the char after this clause a pipe?” | head

“Syntax Versus Semantics”



CSE396 Outline Notes

Some Larger Questions

2. How does an object relate to representations of it?

“This is Not a Pipe.”

echo “But is the char after this clause a pipe?” | head

“Syntax Versus Semantics”



CSE396 Outline Notes

Some Larger Questions—3

3. Sets and Logic

4. What happens when we repeat an operation?
5. Why does grammar matter when speak we?
6. Can we forecast when a program or process is going to halt?



CSE396 Outline Notes

Some Larger Questions—3

3. Sets and Logic
4. What happens when we repeat an operation?

5. Why does grammar matter when speak we?
6. Can we forecast when a program or process is going to halt?



CSE396 Outline Notes

Some Larger Questions—3

3. Sets and Logic
4. What happens when we repeat an operation?
5. Why does grammar matter when speak we?

6. Can we forecast when a program or process is going to halt?



CSE396 Outline Notes

Some Larger Questions—3

3. Sets and Logic
4. What happens when we repeat an operation?
5. Why does grammar matter when speak we?
6. Can we forecast when a program or process is going to halt?



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...

like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Thu. 1/29: Formal Objects and Their Types

Strings and Numbers—covered last time.

Sets—were covered last time as “sets of anything.” Now we become
more specific when building up compound objects.

Compound builders in programming languages: array, list,

struct/record, set, map. . .

Sequences can be infinite, but lists are usually finite, and tuples are
always finite.

Many programming languages treat arrays and lists as similar—so
will we.

Lists are of the same type, but tuples can have components of
different types.

So tuples really model structs/records...like instance objects of
classes.

A 2-tuple is a pair; a 3-tuple is a triple, etc.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.



CSE396 Outline Notes

Building up the ToC World

An alphabet is a set of characters, presumably finite: Alphabet =
set<char>

A string is a list of characters over an alphabet:
string = list<char>

Strings and numbers are our basic objects, and will sometimes be
interchangeable.

A language is a set of strings or numbers—usually infinite!
Language = set<string> ≈ set<int>

Common convention: Lowercase Roman m,n,i,j,k,... for integer
numbers, a,b,c,d,... for other numbers or chars, x,y,z,w,v,u,... for
strings, uppercase Roman L,A,B,C,D,... for languages.


