Def.: A deterministic finite automaton (DFA) is a 5-tuple

\[M = (Q, \Sigma, \delta, s, F) \]

where

- \(Q \) is a finite set of states.
- \(\Sigma \) is an alphabet — that is, a finite set of characters.
- \(s \) is a member of \(Q \), the start state (\(q_0 \) in text).
- \(F \) is a subset of \(Q \), the set of final states (accepting).
- \(\delta \): the transition function:

\[\delta: Q \times \Sigma \rightarrow Q \]

\[(q, c) \rightarrow q' \]

class DFA {
 set <state> Q;
 set <char> \Sigma;
 state s;
 set <state> F;
 state delta (state p, char c); }

KWR prefers:
set delta
set <Triple <state, char, state>> delta;

Visualisation:

\[\delta \subseteq (Q \times \Sigma) \times Q \]

\[p, q \in Q, c \in \Sigma \]

- \(Q \) is a set of nodes.
- \(S \) is a set of edges with labels from \(\Sigma \).

\[P \xrightarrow{c} Q \]

\[\text{Start} \quad \text{New state} \]

\[x = cc \quad x' = c \]
Example: Tell whether a given string X over $\Sigma = \{0, 1\}$ has an odd number of 1s. ($\#_1(X) = \text{number of 1's}$.) If $\#_1(X)$ is odd or not??

$Q = \{\text{even, odd}\}.$

$s = \text{even, since we have seen zero of 1's.}$

$S = \{(s, 0, s), (s, 1, \text{odd}), (\text{odd, 0, odd}), (\text{odd, 1, even})\}.$

The language $L(M)$ of this DFA M equals $\{x \in \{0, 1\}^* : \#_1(x) \text{ is odd zero or more}\}$.

Def: A computation by a DFA $M = (Q, \Sigma, S, s, F)$ is a sequence

$C = (q_0, x_1, q_1, x_2, \ldots, x_{n-1}, q_{n-1}, x_n, q_n)$ where:

$n = |x| \text{ (the length of } x)\)$

$x = x_1 \ldots x_n \text{ where } x_i \text{ is } i^\text{th} \text{ bit:}$

$q_0 = s, \text{ each } q_i \in Q \text{ and}$

$C \text{ is accepting if also } q_n \in F.$

$\overline{\text{Def}}: L(M) = \{x \in \Sigma^* : M \text{ has an accepting computation on input } x\}.$
\(\Sigma = \{0, 1\} \)

\(M_0 = \)

\(Q = \{s\}, F = \emptyset \)

\(L(M_0) = \emptyset \)

\(\emptyset \) empty set.

\(\epsilon \) empty string

\(M_{\text{acc}} = \)

\(Q = \{s\}, \Sigma = \{0, 1\} \)

\(F = \{s\} \)

\(L(M_{\text{acc}}) = \Sigma^* = \{0, 1\}^* \)

other DFAs \(M \) st. \(L(M) = \Sigma^* \):

\(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_0 \)

\(q = \{q_0, q_1, q_2\} \)

\(F = \{q_0, q_2\} \)

Hence a DFA need not be "in lowest terms".

One More Example:
Tell whether a given string \(X \) has the property that

\(\#0 \equiv \#1(X) \equiv 0 \mod 3 \) ?

\(Q = \{q_0, q_1, q_2, q_3\} \)

\(= 0 \equiv 1 \equiv 2 \)

\(S = q_0 \)

\(F = \{q_0, q_2\} \)

\(\Sigma = \{0, 1, 2\} \)

change \(\Sigma = \{0, 1, 2\} \) if the sum of digits in \(X \) is a multiple of

\(\equiv 0 \mod 3 \)

\(\equiv 1 \mod 3 \).
set operation:
union \[A \cup B = \{ x : x \in A \text{ or } x \in B \} \]
intersection \[A \cap B = \{ x : x \in A \text{ and } x \in B \} \]
Difference of sets \[A \setminus B = \{ x : x \in A \text{ but } x \notin B \} \]
(in the Text, '−')
symmetric difference \[A \Delta B = \{ x : x \in A \text{ XOR } x \in B \} \]
\[(A \setminus B) \cup (B \setminus A) \]