
CSE396 Lecture Tue. 2/16: From Regular Expressions To NFAsCSE396 Lecture Tue. 2/16: From Regular Expressions To NFAs
  
HW1 due today, 11:59pm.  I will have office hour HW1 due today, 11:59pm.  I will have office hour 10pm--11pm10pm--11pm this evening for last-minute Qs.  My this evening for last-minute Qs.  My  
remaining office hours still TBA: last call for Survey sheets (only 23 received so far).remaining office hours still TBA: last call for Survey sheets (only 23 received so far).
  
NFAs have NFAs have  with  with ..N N ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) 𝛿 𝛿 ⊆⊆   Q Q ××   𝛴 𝛴 ∪∪   𝜖𝜖   ××  Q Q(( (( {{ }}))

  
Regular Expressions and Their Corresponding NFAs (with Regular Expressions and Their Corresponding NFAs (with -transitions):-transitions):𝜖𝜖

  

  

(B1) (B1)  is a regexp;  is a regexp; ∅∅ LL ∅∅   ==  ∅ ∅;;       N      N   ==   (( )) ∅∅
ss ff 𝛿 𝛿 ==  ∅ ∅(( ))

(B2) (B2)  is a regexp;  is a regexp; 𝜖𝜖 LL 𝜖𝜖   ==   𝜖𝜖 ;;       N      N   ==   (( )) {{ }} 𝜖𝜖 ss ff
𝜖𝜖

For all chars For all chars ::c c ∈∈  𝛴 𝛴

(B3)(B3)   is a regexp;  is a regexp; cc LL cc   ==   cc ;;       N      N   ==   (( )) {{ }}
cc

ss ff
cc

This completes the This completes the basisbasis of an  of an inductive definitioninductive definition of regular expressions. Now let  of regular expressions. Now let  and  and   𝛼𝛼 𝛽𝛽

be any two regular expressions, with languages be any two regular expressions, with languages  and  and .  By .  By inductiveinductiveA A ==  L L 𝛼𝛼(( )) B B ==  L L 𝛽𝛽(( ))

hypothesishypothesis ( (IHIH) we have NFAs ) we have NFAs  and  and  such that  such that  and  and .  Then:.  Then:NN𝛼𝛼 NN𝛽𝛽 LL NN   ==  A A(( 𝛼𝛼)) LL NN   ==  B B(( 𝛽𝛽))

Now to complete the Now to complete the induction caseinduction case (I1) we need to show how to build an NFA (I1) we need to show how to build an NFA    such such𝜖𝜖 NN𝛾𝛾

that that .  What we have to work with is (are) .  What we have to work with is (are)  and  and .  We know they have.  We know they haveLL NN   ==  L L 𝛾𝛾(( 𝛾𝛾)) (( )) NN𝛼𝛼 NN𝛽𝛽

start states we can call start states we can call  and  and .  Taking a cue from the base case NFAs, and mainly for .  Taking a cue from the base case NFAs, and mainly for ss𝛼𝛼 ss𝛽𝛽
convenience, we may suppose they have unique accepting states convenience, we may suppose they have unique accepting states  and  and . Besides that,. Besides that,ff𝛼𝛼 ff𝛽𝛽

we make no assumptions about their internal structure, so we draw them as "blobs": we make no assumptions about their internal structure, so we draw them as "blobs": 

(I1) (I1)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ∪∪  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ∪∪  B B..(( ))

ss𝛼𝛼 ff𝛼𝛼 ss𝛽𝛽 ff𝛽𝛽NN𝛼𝛼 NN𝛽𝛽

The goal is to connect them together to make The goal is to connect them together to make  with needed properties, also for the cases: with needed properties, also for the cases:NN𝛾𝛾

(I2) (I2)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ⋅⋅  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ⋅⋅  B B..(( ))

(I3) (I3)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼 𝛼** LL 𝛾𝛾   ==  A A ..(( )) ** (In I3 we have only (In I3 we have only  given.) given.)NN𝛼𝛼

   has  has 𝛿𝛿 ss,, 𝜖𝜖,, ff(( ))

TopHat 5565TopHat 5565

 has  has 𝛿𝛿 ss,, cc,, ff(( ))

alphaalpha betabetagammagamma



1. 1.                                            by machine construction;                                           by machine construction;LL NN   ==  L L NN   ∪∪  L L NN(( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

2. 2.  and  and                               by inductive hypothesis;                              by inductive hypothesis;LL NN   ==  L L 𝛼𝛼(( 𝛼𝛼)) (( )) LL NN   ==  L L 𝛽𝛽(( 𝛽𝛽)) (( ))

3. 3. Thus Thus     by definition of     by definition of ..LL NN   ==  L L 𝛼𝛼   ∪∪  L L 𝛽𝛽   ==  L L 𝛼𝛼∪∪ 𝛽𝛽   ==  L L 𝛾𝛾(( 𝛾𝛾)) (( )) (( )) (( )) (( )) 𝛾𝛾

  
[I will continue as time permits by copy-and-paste and moving things around to do the other two[I will continue as time permits by copy-and-paste and moving things around to do the other two  
inductive cases to complete the proof.  But first, are you completely happy with inductive cases to complete the proof.  But first, are you completely happy with  as it stands?] as it stands?]NN𝛾𝛾

  
  
  
  
  
  
[Answer was [Answer was nono: adding the state : adding the state  and  and -arcs shown in red "preserves the invariant" of the-arcs shown in red "preserves the invariant" of theff𝛾𝛾 𝜖𝜖

NFAs all having a single accepting state.]NFAs all having a single accepting state.]
  
  
  
  

  

  

Construction for (I1):Construction for (I1):

NN   ==   𝛾𝛾 ss𝛾𝛾

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽

𝜖𝜖

𝜖𝜖

This builds This builds , but we still need to prove it is correct, i.e., , but we still need to prove it is correct, i.e., . . Note the rhythm:Note the rhythm:NN𝛾𝛾 LL NN   ==  L L 𝛾𝛾   (( 𝛾𝛾)) (( ))

note rule: note rule:   𝜖𝜖 ·· x x ==  x x

for all strings for all strings ..xx

ff𝛾𝛾

𝜖𝜖

𝜖𝜖

TargetTarget ::  L L 𝛾𝛾   ==  L L 𝛼𝛼   ∪∪  L L 𝛽𝛽(( )) (( )) (( ))

This doesThis does ::  L L NN   ==  L L NN   ∪∪  L L NN(( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

 L L 𝛼𝛼   ∪∪  L L 𝛽𝛽(( )) (( ))



  
Now back to our recursive construction of regular expressions and NFAs corresponding to them.  ThisNow back to our recursive construction of regular expressions and NFAs corresponding to them.  This  
proves one part of a theorem discovered by Stephen Kleene in the 1950s.proves one part of a theorem discovered by Stephen Kleene in the 1950s.
  
TheoremTheorem: For any language : For any language  over an alphabet  over an alphabet , the following statements are equivalent:, the following statements are equivalent:AA 𝛴𝛴

1. 1. There is a regular expression There is a regular expression  such that  such that ..𝛼𝛼 A A ==  L L 𝛼𝛼(( ))

2. 2. There is an NFA There is an NFA  such that  such that ..NN A A ==  L L NN(( ))

3. 3. There is a DFA There is a DFA  such that  such that ..MM A A ==  L L MM(( ))

  
We are in the middle of proving 1 We are in the middle of proving 1 2.  Next will be 2 2.  Next will be 2 3.  Then 3 3.  Then 3 1 would "complete the1 would "complete the  ⟹⟹ ⟹⟹ ⟹⟹

cycle of equivalence" but in fact we will use something more general than an NFA to go to 1.cycle of equivalence" but in fact we will use something more general than an NFA to go to 1.
  

  

  

(I2) (I2)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ⋅⋅  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ⋅⋅  B  B ==   xyxy ::  x  x ∈∈ A A ∧∧  y  y ∈∈  B B ..(( )) {{ }}

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼
ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽𝜖𝜖

Then Then  because....processing.... because....processing....LL NN   ==  L L NN   ⋅⋅  L L NN(( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

To write the reasoning out: To write the reasoning out:  can process a string  can process a string  from its start state  from its start state  to its (unique) to its (unique)NN𝛾𝛾 zz ss   ==  s s𝛾𝛾 𝛼𝛼

final state final state  if and only if  if and only if  has a first part  has a first part  that gets processed from  that gets processed from  to  to  and a and aff   ==  f f𝛾𝛾 𝛽𝛽 zz xx ss𝛼𝛼 ff𝛼𝛼

second part second part  that gets processed from  that gets processed from  to  to  (with the  (with the  from  from  to  to  silently in-between).  I.e.: silently in-between).  I.e.:yy ss𝛽𝛽 ff𝛽𝛽 𝜖𝜖 ff𝛼𝛼 ss𝛽𝛽
  Thus  Thusz z ∈∈  L L NN   ⟺⟺ z z ∈∈   xx ⋅⋅ yy ::  x  x ∈∈  L L NN   ∧∧  y  y ∈∈  L L NN   ⟺⟺  z  z ∈∈  L L NN ⋅⋅ LL NN ..(( 𝛾𝛾)) {{ (( 𝛼𝛼)) (( 𝛽𝛽))}} (( 𝛼𝛼)) (( 𝛽𝛽))

.  .  LL NN   == LL NN ⋅⋅ LL NN   (( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

By By IHIH, this equals , this equals , which by how the semantics of , which by how the semantics of LL 𝛼𝛼 ⋅⋅ LL 𝛽𝛽(( )) (( )) 𝛾 𝛾 ==

 is defined via  is defined via finally gives us the needed conclusion finally gives us the needed conclusion   𝛼𝛼 ⋅⋅ 𝛽𝛽 LL 𝛾𝛾   ==  L L 𝛼𝛼 ⋅⋅ LL 𝛽𝛽   (( )) (( )) (( )) LL NN   ==  L L 𝛾𝛾 ..(( 𝛾𝛾)) (( ))

::NN𝛾𝛾

LL 𝛾𝛾   ==  L L 𝛼𝛼   ⋅⋅ LL 𝛽𝛽(( )) (( )) (( ))



  
Whoops: The machine requires Whoops: The machine requires  to be entered at least once, so it really does  to be entered at least once, so it really does , not , not ..    NN𝛼𝛼 LL NN(( 𝛼𝛼))++ LL NN(( 𝛼𝛼))**

There was what we now consider a glitch in an old programming language's for-loop where it wouldThere was what we now consider a glitch in an old programming language's for-loop where it would  
execute at least once even if the range was null.  To get execute at least once even if the range was null.  To get  for "zero-or-more" rather than superscript  for "zero-or-more" rather than superscript   ** ++

for "one-or-more" we can add an extra for "one-or-more" we can add an extra -arc:-arc:𝜖𝜖

  

  
The proof yields an algorithm for converting any regular expression into an equivalent NFA.  TheThe proof yields an algorithm for converting any regular expression into an equivalent NFA.  The  
algorithm works by recursion on operators in the regular expression.  In practice, you don't have toalgorithm works by recursion on operators in the regular expression.  In practice, you don't have to  
follow it quite so literally, and you can often avoid most fo the follow it quite so literally, and you can often avoid most fo the -arcs that it introduces.  The most-arcs that it introduces.  The most  𝜖𝜖

common place to save is in the concatenation case.common place to save is in the concatenation case.

  

  

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

(I3) Given any regexp (I3) Given any regexp ,  ,   is a regexp;  is a regexp; ; and we can build:; and we can build:𝛼𝛼 𝛾𝛾  ==  𝛼 𝛼** LL 𝛾𝛾   ==  L L 𝛼𝛼(( )) (( ))**

ss𝛾𝛾 ff𝛾𝛾

𝜖𝜖

𝜖𝜖𝜖𝜖

NN   ==𝛾𝛾

Is this good?  We want to make Is this good?  We want to make .  Then the .  Then the IHIH  LL NN   ==  L L NN(( 𝛾𝛾)) (( 𝛼𝛼))** LL NN   ==  L L 𝛼𝛼(( 𝛼𝛼)) (( ))

will give will give  as needed---to finish the whole proof. as needed---to finish the whole proof.LL NN == LL 𝛼𝛼 == LL 𝛼𝛼 == LL 𝛾𝛾(( 𝛾𝛾)) (( ))** ** (( ))

This is a This is a Feedback CircuitFeedback Circuit

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

(I3) Given any regexp (I3) Given any regexp ,  ,   is a regexp;  is a regexp; ; and we can build:; and we can build:𝛼𝛼 𝛾𝛾  ==  𝛼 𝛼** LL 𝛾𝛾   ==  L L 𝛼𝛼(( )) (( ))**

ss𝛾𝛾 ff𝛾𝛾

𝜖𝜖

𝜖𝜖𝜖𝜖

NN   ==𝛾𝛾
This is a This is a Feedback CircuitFeedback Circuit

𝜖𝜖
𝜖𝜖

with bypass.with bypass.

The yellow fix is good tooThe yellow fix is good too
because because ..𝛼𝛼++ 𝜖𝜖   ==  𝛼 𝛼(( ))++ **



  
So in the example from the Thu. 2/11 lecture, we needed the So in the example from the Thu. 2/11 lecture, we needed the -arc:-arc:𝜖𝜖

  

  

  

  

(I2) (I2)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ⋅⋅  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ⋅⋅  B  B ==   xyxy ::  x  x ∈∈ A A ∧∧  y  y ∈∈  B B ..(( )) {{ }}

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼
ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽𝜖𝜖

::NN𝛾𝛾

can becomecan become

ss𝛼𝛼 ff == ss𝛼𝛼 𝛽𝛽NN𝛼𝛼
ff𝛽𝛽NN𝛽𝛽::NN𝛾𝛾

unlessunless there is both an arc into  there is both an arc into  in  in   andand an arc out of  an arc out of  in  in ..ss𝛽𝛽 NN𝛽𝛽 ff𝛼𝛼 NN𝛼𝛼

𝜖𝜖
ffss

qq rr

aa
bb

aa bb

NN   ==   11

abab baba(( ))**(( ))**

ss

qq

NN   ==   22

aa
bb

rr

aa

bb

ab ab ∪∪  ba ba(( ))**

Does not allow Does not allow baabbaab Does allow Does allow baabbaab

ffss

qq rr

aa
bb

aa

N'N'   ==   11

abab baba(( ))**(( ))**

bbbb

𝜖𝜖

ff

pp

qq rr

aa
bb

aa bb

NN   ==   33

ss
𝜖𝜖

abab   ∪∪   baba(( ))** (( ))**

Allows neither Allows neither 
 nor  nor abbaabba baabbaab

Shortcutting the Shortcutting the -arc-arc𝜖𝜖
basically creates a DFAbasically creates a DFA

"Arcs to the"Arcs to the
dead statedead state
not shown."not shown."

StartStart StartStart

StartStart StartStart

tt
𝜖𝜖

𝜖𝜖

pp

qq rr

aa

bb
aa bb

NN   ==   33

ssStartStart

tt

aa bb

(In lecture I added(In lecture I added
the new state the new state  with withff
arcs from arcs from  and  and , , pp tt
which originally werewhich originally were
the accepting states.)the accepting states.)

Instead, we canInstead, we can
redesign the FAredesign the FA
to not have any to not have any 
-arcs.  Then it is-arcs.  Then it is𝜖𝜖

a "DFA manqué"a "DFA manqué"
meaning it lacksmeaning it lacks
only a dead stateonly a dead state
and arcs to it.and arcs to it.



The example at bottom right could be "shortcutted" by making The example at bottom right could be "shortcutted" by making  an accepting state (which you can do an accepting state (which you can do  ss

anyway) and making its arcs go on anyway) and making its arcs go on  to state  to state  and on  and on  to state  to state  instead.  Some texts stop to prove instead.  Some texts stop to prove  aa qq bb rr

the theorem that every NFA with the theorem that every NFA with -arcs can be (efficiently!) converted into an equivalent NFA without-arcs can be (efficiently!) converted into an equivalent NFA without  𝜖𝜖

them, in order to do "NFA-to-DFA" without them.  Our text by Sipser tries to have it both ways by doingthem, in order to do "NFA-to-DFA" without them.  Our text by Sipser tries to have it both ways by doing  
the proof first without them and then with them, but (on Thursday) I will prefer to embrace the the proof first without them and then with them, but (on Thursday) I will prefer to embrace the 's.  But's.  But  𝜖𝜖

for building NFAs, you can usually avoid the for building NFAs, you can usually avoid the -arcs on the fly because many common examples involve-arcs on the fly because many common examples involve  𝜖𝜖

languages where things naturally go forward.languages where things naturally go forward.
  
ExampleExample: : ..r r ==   abab ++ bbbb aaaa ++ bbbb bb aa ++ 𝜖𝜖 aa(( ))**(( ))(( (( ))))**

  

  
  
How can we track this machine on an input such as How can we track this machine on an input such as ?  We can try individual?  We can try individual  x x ==  bbaabbaa bbaabbaa
computations by trial-and-error:computations by trial-and-error:
  

 ---? Crash! ---? Crash!ss,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa(( 33 55

 --- Crash! --- Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,,(( 11 22 55 44

 --- Cannot process the final  --- Cannot process the final , so Crash!, so Crash!ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, ff,, aa(( 11 22 55 55 55 aa

: end of string, and state is : end of string, and state is , so , so acceptaccept..ss,, bb,, qq ,, bb,, ss,, aa,, qq ,, aa,, qq ,, bb,, qq ,, bb,, qq ,, aa,, qq ,, aa,, ff(( 11 22 55 55 44 55 )) ff
  
The idea of the DFA is to keep track of all the possibilities in-parallel:The idea of the DFA is to keep track of all the possibilities in-parallel:
  

..    ss ,, bb,, qq ,, qq ,, bb,, ss,, qq ,, aa,, ff,, qq ,, aa,, qq ,, bb,, qq ,, qq ,, bb,, qq ,, qq ,, aa,, ff,, qq ,, aa,, ff(({{ }} {{ 11 33 }} {{ 55 }} {{ 22 }} {{ 55 }} {{ 44 55 }} {{ 44 55 }} {{ 55 }} {{ }}))

  

  

ff

ss

qq11

aa,, bbbb

aa

bb

NN   ==   rr

qq22

qq33

qq44

qq55

StartStart bb

aa

aa
aa

bb

bb

"Transcribing""Transcribing"
the regularthe regular
expression expression 
"is" the strategy."is" the strategy.

note: note: bb aa ++ 𝜖𝜖   ==  b b ++ baba(( ))


