CSE396 Lecture Tue. 2/23: NFAs, DFAs, and GNFAs

Picking up with the long NFA-to-DFA example:

a @ "Whenever g4, then also g5. "
"Transcribing"
“ Q(‘]S/ b) = {Q4/ l75} 9
b ! the regular
@ expression
"is" the strategy.

To@

(ayl

a

b
{s, 5}

Since the NFA N had only

one final state f, the final b b
states of the DFA M are "

just those sets that have f.

@
w@
GO

a,b

[Tue. 2/23 will pick up here, then do the example with €'s.]
For any string x, the set-state of the DFA after processing x equals the set of states that N can process
x to. Thus, for instance:

« N can process the string bba to any of its states 1, 2, and all the way across to f.

« N can process bbab, however, only back to its start state s.

N accepts aaa but cannot process aaaa.

« The shortest string that N can process to four different states is bbb.

+ The shortest string that goes to 4 states, one of which is f, however, is bbbba.

« There is no string that N can process to more than four different states---in particular, there is no
string that "lights up" every state, because the "omni" set-state {s,1,2,3,4,5, f} = Q was
never encountered in the breadth-first search.

* There is no state that guarantees acceptance: every state can reach a rejecting state with more
chars. In fact, every state has a path to the dead state.

In other cases, the DFA M may never reach a dead state. It might (also) have an "eternal state",
meaning an accepting state that loops to itself. The "omni" state, even when reached, need not be
eternal (though if M has any eternal state, "omni" is eternal). M can even have a cluster of accepting
states that cycle amongst themselves without ever going to a rejecting state---though such a cluster
can then be "condensed" into a single eternal state. This last possibility also tells you that the DFA
cranked out by the algorithm is not necessarily optimal in size.

Proof of the Theorem
Recall definitions and specifications of the DFAM = (Q,X, A, S,) from before:

Epsilon closure: E(R) = {r: forsomeq € R, N can process € from q to r}

« Q = {possibleR € Q};

« X is the same;

S = E(s);

F ={Re€e Q:RNF # @}

O(p,c) = {r: you can get from p to r by first processing c at p, then doing any e-arcs}.

Forany P € Q (i.e., P C Q and P is possible) and c € X define

aw,0 = U, o).

peP

How do we prove L(M) = L(N)? What we want to prove is that for every string x, the state R that
M is in equals the set of states r such that N can process x from s to 7. Then the definition of the final
states F of M kicks in to say that the languages are equal.

« Define G(i) to be the statement that this holds for all strings x of length i.

» Then G(0) says that the start state of M should equal the set of states 7 such that N can
process € from s to r. Since this is exactly the meaning of E(s), which is made the start state S
of M, the base case G(0) holds.

« Toprove L(M) = L(N), then, we only need to show G(i —1) = G(i) for each i.

Inthe step i = 1, the fact that S is e-closed sets up the assumption that P in A(P, ¢) is e-closed. The
value A(P, ¢) is automatically e-closed, since c-€* = ¢ so any trailing e-arcs can count as part of
processing c. If we---

« assume G(i— 1) as our induction hypothesis,
« take the set R;_; which the property G(i — 1) refers to, and
» define Ri = A(Ri_l,xi),

---then we only need to show that R; has the property required for the conclusion G(i). This is that R;
equals the set of states that N can process the bits x; --- x;_1x; to. The core of the proof observes
that:

N can process X1Xy +** X;_1X; from s to r if and only if there is a state p such that N can process
X1Xp --+ xj_1 from s to p (which by IH G(i — 1) includes p into R;_1) and such that N can process
the char x; fromp to r.

Then by the inductive hypothesis G(i — 1), R;_; equals the set of states g such that N can process
xq -+ X1 fromstog. NowputR; = A(R;_4,x;).

« Letr € R;. Thenr € 4(g,x;) forsomeq € R;_;. By IHG(i—1), N can process x1 -+ Xj_1
from s to 4. And N can process x; from g to r by definition of r € 0(g,x;) . So N can process
X1 --- x; fromstor.

« Suppose N can process X1 --- X; from s to 7. Then---and this is the key point---the processing
goes to some state g just before the char x; is processed. By IH G(i—1), g belongs to R;_;.
Moreover, r € 0(g, x;) because we first do the step that processed the char x; at g, then any
trailing e-arcs. Thusr € A(R;_1,x;), whichmeansr € R;.

Thus we have established that R; equals the set of states r such that N can process x; --- x; from s to
r. This is the statement G(i), which is what we had to prove to make the induction go through. This
finally proves the NFA-to-DFA part of Kleene's Theorem.

More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.

P DFAM = S = E({1}) = {1,2} This is an accepting state of M
A(S,a) = 6(1,a)U 6(2,a) = {1,2} U{3} = {1, 2,3}
A(S,b) = 0(1,b)U 6(2,b) = {3} U {} = {3}

State {3} counts as "new" state even though N has it.
A({1,2,3},a) = {1,2}U{3}U{1,2} = {1,2,3}
Must be {1, 2, 3} since we got to the "omni" state on a.
A({1,2,3},b) = {3luou{2} = {2,3}

e "Whenever 1
then also 2."

We could have made ~ States {1} and {1, 3} Not "omni" but is new. Doing state {3} next:
state 1 accepting too. are not possible in M. ({) H 6(3 a) H {1 2}. NEth e Backlio]
5(p,¢) = "firstdo c then any €'s." ({3} b) = 6(3,b) = {2}. Isnew. (And is trouble)
A({2,3},a) = { PUil,2} = {1,2,3}
8] a b |] A({2,3},b) = U2} = {2} Just {2} left now.
T[TL2] B} F ='anyting A(j2},a) = 6(2 a) = {3} Notnew.
2| 3} 2 with 2° = {{1,2, 3}, A({2},b) = 6(2,b) = @ So M has a dead state.
3111,2} {2) 11,2},12,3}, {2}} A(@,a) = @,A(@,b) = @. BFS has closed: done.

Note that the original NFA N can

process a from s to any one of its
three states. But N can't process
bbb from any of its three states.

This DFA M has a dead state but
does not have any eternally
accepting (cluster of) states.

Brample: 30 Gwe ter £)

o (%a)et1,22 S01b)= {77
= = 7 '
f,!{} ‘ Sl%9)<331 812b)=
s 2U3,0):00,2F 8138027
i) S AR = Uy $(pe)

$2Lh2F a3 Usc fuadh it Sech fraw S

%W% (cﬂ”m?’l,cvﬁ ﬂtj/“w‘b G pq) Ué[z c{)
Hc’*’%fﬁ Jiot Jhef Aol gu(w /{ifi@
hgqwt ’i Pt At A 54}/ 2))7) U‘) Z,b} ‘.{,I}“

' ?%6(/{/ 23 ,,;wmi

b Alividta) =402 27 |
Al£h23¢8 p) = §3f ﬁu zz ﬂ%‘”}* o
G %M@ Whith 15
b\b A3 3801] 5[5,)f{,if
) PR3})= i}fff’/zfziazﬁ%
' A {2{ 2~q]?£; vl - V44 7
qu ﬁfli;?f‘?w?@ d?._g_% {7t)
i i b NGt a) a0 2531 Mlje) P
Lin lecup 2 ,pf.-u'nﬁc{cfvir* DLiAY =512, b/f/@/ NI/
o N\ A ann -;~”p M rana 4L N{' W{e "/[tWS/lkj We j‘f{-j ﬂqrﬁ rW [{Gi

More on how the states of the DFA tell what the NFA can and cannot process:

« The NFA cannot process the string bbb from its start state at all. However you try, you come to
the NFA state 2 being unable to process a b. Nor can it process bbb from any other state.

« However, N can process a from start to any one of its three states:

-(1,a,1)
- (1,a,1)(1,€,2)
- (1,¢,2)(2,a,3).
This is shown in the DFA by the single arc (S, 4, {1,2,3}).

« Butin the string x = abbb, even though the initial 2 "turns on all three lightbulbs of N", the final
bbb still cannot be processed by N. The DFA M does process it via the computation
(S,a,{1,2,3)({1,2,3},b,{2,3})({2,3},b,{2})({2},b, @) , but that computation ends at &,
which---when present at all---is always a dead state.

Another example [try for k = 2 or 3]: The "Leap of Faith" NFAs N forany k > 1:

k-1 arcs
01 | |

0 0 0

1 1 1

L(Ny) = (0+1)*1(0 + 1)1
= {x € {0,1}": the kth bit of x from the end isal}.

Fact (will be proved next week): Whereas the NFA N has only k + 1

states, the smallest DFA M such that L(M,) = L(N,) requires 2 states.
This is a case of exponential blowup in the NFA-to-DFA algorithm.

Now here is a simple algorithm for telling whether a given string x matches a given regexp a:
1. Convert « into an equivalent NFA N,,.
2. Convert N, into an equivalent DFA M,,.
3. Run M, on x. Ifit accepts, say "yes, it matches", else say "no match".

This algorithm is correct, but it is not efficient. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings x, but most of them are unnecessary for the particular x that
was given.

There is, however, a better way that builds just the set-states Ry, ..., R;, ..., R,, that are actually
encountered in the particular computation on the particular x. We have Ry = S = E(s) to begin with.
To build each R; from the previous R;_1, iterate through every g € R;_; and union together all the sets
(g, x;). If N, has k states---which roughly equals the number of operations in a---then that takes

order n - k - k steps. This is at worst cubic in the length O(n + k) of x and « together, so this counts as
a polynomial-time algorithm. It is in fact the algorithm actually used by the grep command on

Linux/UNIX. (The tilde above the O means ignoring factors of log n.)
Generalized NFAs (GNFAs)

| view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs. The
meaning of an arc from a state p to a state g is "all ways we know so far to get from state p to state g, in

however many steps." By getting from state p to state g we mean a string processed along the way, so
our notation Lp,q = {w € X*: N can process w from p to g} comes into play. We will see that this
language is always regular "in the final analysis." Moreover, insofar as € or one single character a or b
(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA
anyway. And a loop or edge labeled a, b could really be the non-basic regular expression a U b
anyway.

So let us generalize arcs to any regular expressions over the alphabet X, letting Regexp(X) stand for
that.

Definition: A generalized NFA (GNFA) is a 5-tuple G = (Q, X, 6, s, F) where Q, X, s, F are the same
asinan NFAbutnow 6 C (Q X Regexp(X)) X Q.

Definition: A sequence ¢ = [q0, w1, 911191, 42,2192, u3, 93] -+~ [9i-2, Us19i1119¢-1, ut, g¢] is @
valid computation if foreachi, 1 < i <, there is an instruction (§,-1, @, q;) € 6 such that the
string u; matches the regular expression «. The string processed by the computation is the string
U = Uq-Up-Uz -+ Us_q - U, Which might be shorter or longer than . Then we say the GNFA G can
process u from g to q; and write u € qu,qt (with G understood). Then as before,

L@G) = ULy,

feF

The idea can be put across less technically even when we use abstract regular expressions &, 8, v, 11
(alpha, beta, gamma, eta).

a *

Liy = (o + 57/*77)
Lip = Lii-By* = (a + 57/*77)*57*

! Ly, = (7/ + 770‘*5)
P Loy = Lap-na* = (y + na'p) na’

Ly, alsoequals a*f Ly, = a*ﬁ(y + na*ﬁ)*.
N
These become more user-friendly base cases than what rthe text does for the FA-to-regexp proof in
section 1.3, which will complete the proof of Kleene's Theorem of equivalence on Thursday.

Notes for Thursday (now posted separately, will be edited up or down a bit)

[l didn't quite cover the above in time on Tue. 2/23, but my notes were planning to reiterate it anyway.
The purpose of using 2-state GNFAs as the base case is that (i) they save you the trouble of having to
make a new state state, (ii), they often save having to make a new single final state as well, and (iii)
they always save the final step of the text's algorithm which often involves having to cut and paste
excruciatingly long regular expressions. On HWs and exams you'll be able to save that pencil-pushing
by just saying the single Greek letters and saying whether the language is L, lef, orLg U lef.]

