
CSE396 Lecture Tue. 2/23: NFAs, DFAs, and GNFAsCSE396 Lecture Tue. 2/23: NFAs, DFAs, and GNFAs

Picking up with the long NFA-to-DFA example:Picking up with the long NFA-to-DFA example:

The whole DFA:The whole DFA:

[Tue. 2/23 will pick up here, then do the example with [Tue. 2/23 will pick up here, then do the example with 's.]'s.]𝜖𝜖

For any string For any string , the set-state of the DFA after processing , the set-state of the DFA after processing equals the set of states that equals the set of states that can process can process xx xx NN

 to. Thus, for instance: to. Thus, for instance:xx

• • can process the string can process the string to any of its states to any of its states , 2, and all the way across to , 2, and all the way across to ..NN bbabba 11 ff

ff

ss

qq11

aa,, bbbb

aa

bb

NN == rr

qq22

qq33

qq44

qq55

StartStart

aa

aa
aa

bb

bb

"Transcribing""Transcribing"
the regularthe regular
expression expression
"is" the strategy."is" the strategy.

qq ,, qq is impossible is impossible.. Why Why??{{ 22 33 }}

𝜖𝜖

"Whenever "Whenever , then also , then also qq44 qq .. ""55

qq ,, bb == qq ,, qq𝛿𝛿((55)) {{ 44 55 }}

qq ,, bb == 𝛿𝛿((44)) {{ }}

SS == ss{{ }} 11,, 22{{ }}

11,, 33{{ }}

55{{ }}

ss,, 55{{ }}

ff{{ }}

∅∅

44,, 55{{ }}11,, 22,, ff{{ }}

11,, 22,, 55,, ff{{ }}

55,, ff{{ }}

ss,, 44,, 55{{ }}

11,, 33,, 44,, 55{{ }}

bb

aa

bb

aa

aa
bb

aa,, bb

aa
aa,, bb

To To ∅∅

bb

aa

aa
bb

bb

aa

bb

aa

bb

aa

bb

aa aa

bb
bb

Since the NFA Since the NFA had only had onlyNN

one final state one final state , the final, the finalff

states of the DFA states of the DFA are areMM

just those sets that have just those sets that have ..ff

• • can process can process , however, only back to its start state , however, only back to its start state ..NN bbabbbab ss

• • accepts accepts but cannot process but cannot process ..NN aaaaaa aaaaaaaa

• • The shortest string that The shortest string that can process to four different states is can process to four different states is ..NN bbbbbb

• • The shortest string that goes to 4 states, one of which is The shortest string that goes to 4 states, one of which is , however, is , however, is ..ff bbbbabbbba

• • There is no string that There is no string that can process to more than four different states---in particular, there is no can process to more than four different states---in particular, there is no NN

string that "lights up" every state, because the "omni" set-state string that "lights up" every state, because the "omni" set-state was was ss,, 11,, 22,, 33,, 44,, 55,, ff == Q Q{{ }}
never encountered in the breadth-first search.never encountered in the breadth-first search.

• • There is no state that guarantees acceptance: every state can reach a rejecting state with moreThere is no state that guarantees acceptance: every state can reach a rejecting state with more
chars. In fact, every state has a path to the dead state.chars. In fact, every state has a path to the dead state.

In other cases, the DFA In other cases, the DFA may never reach a dead state. It might (also) have an "eternal state", may never reach a dead state. It might (also) have an "eternal state", MM
meaning an accepting state that loops to itself. The "omni" state, even when reached, need not bemeaning an accepting state that loops to itself. The "omni" state, even when reached, need not be
eternal (though if eternal (though if has any eternal state, "omni" is eternal). has any eternal state, "omni" is eternal). can even have a cluster of accepting can even have a cluster of accepting MM MM
states that cycle amongst themselves without ever going to a rejecting state---though such a clusterstates that cycle amongst themselves without ever going to a rejecting state---though such a cluster
can then be "condensed" into a single eternal state. This last possibility also tells you that the DFAcan then be "condensed" into a single eternal state. This last possibility also tells you that the DFA
cranked out by the algorithm is not necessarily optimal in size.cranked out by the algorithm is not necessarily optimal in size.

Proof of the TheoremProof of the Theorem
Recall definitions and specifications of the DFA Recall definitions and specifications of the DFA from before: from before: M M == QQ,,𝛴𝛴,,𝛥𝛥,, SS,,FF(())

Epsilon closureEpsilon closure: : EE RR == rr :: for some q for some q ∈∈ R R,, N can process 𝜖 from q to r N can process 𝜖 from q to r(()) {{ }}

• • QQ == possible R possible R ⊆⊆ Q Q ;;{{ }}

• • is the same; is the same;𝛴𝛴

• • ;;S S == E E ss(())

• • FF == R R ∈∈ QQ :: R R ∩∩ F F ≠≠ ∅ ∅ ..{{ }}

you can get from you can get from to to by first processing by first processing at at , then doing any , then doing any -arcs-arcs ..pp,, cc == rr :: 𝛿𝛿(()) {{ pp rr cc pp 𝜖𝜖 }}

• • For any For any (i.e., (i.e., and and is possible) and is possible) and definedefinePP ∈∈ QQ P P ⊆⊆ Q Q PP cc ∈∈ 𝛴 𝛴

 ..𝛥𝛥 PP,, cc == pp,, cc(()) ⋃⋃

p∈Pp∈P

𝛿𝛿(())

How do we prove How do we prove ? What we want to prove is that ? What we want to prove is that for every string for every string , the state , the state that that LL MM == L L NN(()) (()) xx RRxx

 is in equals the set of states is in equals the set of states such that such that can process can process from from to to . Then the definition of the final. Then the definition of the final MM rr NN xx ss rr

states states of of kicks in to say that the languages are equal. kicks in to say that the languages are equal.FF MM

• • Define Define to be the statement that this holds for all strings to be the statement that this holds for all strings of length of length .. GG ii(()) xx ii

• • Then Then says that the start state of says that the start state of should equal the set of states should equal the set of states such that such that can can GG 00(()) MM rr NN

process process from from to to . Since this is exactly the meaning of . Since this is exactly the meaning of , which is made the start state , which is made the start state 𝜖𝜖 ss rr EE ss(()) SS

of of , the base case , the base case holds. holds.MM GG 00(())

• • To prove To prove , then, we only need to show , then, we only need to show for each for each ..LL MM == L L NN(()) (()) GG ii -- 11 ⟹⟹ G G ii(()) (()) ii

In the step In the step , the fact that , the fact that is is -closed sets up the assumption that -closed sets up the assumption that in in is is -closed. The-closed. The i i == 1 1 SS 𝜖𝜖 PP 𝛥𝛥 PP,, cc(()) 𝜖𝜖

value value is automatically is automatically -closed, since -closed, since so any trailing so any trailing -arcs can count as part of-arcs can count as part of 𝛥𝛥 PP,, cc(()) 𝜖𝜖 cc ⋅⋅ 𝜖𝜖 == c c** 𝜖𝜖

processing processing . If we---. If we---cc

• • assume assume as our induction hypothesis, as our induction hypothesis, GG ii -- 11(())

• • take the set take the set which the property which the property refers to, and refers to, and RRi-1i-1 GG ii -- 11(())

• • define define ,, RR == 𝛥 𝛥 RR ,, xxii ((i-1i-1 ii))

---then we only need to show that ---then we only need to show that has the property required for the conclusion has the property required for the conclusion . This is that . This is that RRii GG ii(()) RRii

equals the set of states that equals the set of states that can process the bits can process the bits to. The core of the proof observes to. The core of the proof observes NN xx ⋯⋯ xx xx11 i-1i-1 ii

that:that:

 can process can process if and only if there is a state if and only if there is a state such that such that can process can process NN xx xx ⋯⋯ xx xx from s to r from s to r11 22 i-1i-1 ii pp NN

 from from to to (which by IH (which by IH includes includes into into) and such that) and such that can process can process xx xx ⋯⋯ xx11 22 i-1i-1 ss pp GG ii -- 11(()) pp RRi-1i-1 NN

the char the char from from to to .. xxii pp rr

Then by the inductive hypothesis Then by the inductive hypothesis , , equals the set of states equals the set of states such that such that can process can process GG ii -- 11(()) RRi-1i-1 qq NN

 from from to to . Now put . Now put .. xx ⋯⋯ x x11 i-1i-1 ss qq RR == 𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let . Then . Then for some for some . By IH . By IH , , can process can process r r ∈∈ R Rii r r ∈∈ qq,, xx 𝛿𝛿((ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(()) NN xx ⋯⋯ x x11 i-1i-1

from from to to . And . And can process can process from from to to by definition of by definition of . So . So can process can process ss qq NN xxii qq rr r r ∈∈ qq,, xx 𝛿𝛿((ii)) NN

 from from to to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose can process can process from from to to . Then---and this is the key point---the processing. Then---and this is the key point---the processing NN xx ⋯⋯ xx11 ii ss rr

goes to some state goes to some state just before the char just before the char is processed. By IH is processed. By IH , , belongs to belongs to .. qq xxii GG ii -- 11(()) qq RRi-1i-1

Moreover, Moreover, because we first do the step that processed the char because we first do the step that processed the char at at , then any, then any r r ∈∈ qq,, xx𝛿𝛿((ii)) xxii qq

trailing trailing -arcs. Thus -arcs. Thus , which means , which means ..𝜖𝜖 r r ∈∈ 𝛥 𝛥 RR ,, xx((i-1i-1 ii)) r r ∈∈ R Rii

Thus we have established that Thus we have established that equals the set of states equals the set of states such that such that can process can process from from to to RRii rr NN xx ⋯⋯ xx11 ii ss

. This is the statement . This is the statement , which is what we had to prove to make the induction go through. This, which is what we had to prove to make the induction go through. This rr GG ii(())

finally proves the NFA-to-DFA part of Kleene's Theorem. finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒

More examples:More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.

NFA NFA N N ==
11

2233

𝜖𝜖

aa DFA DFA M M ==

"Whenever 1"Whenever 1
then also 2."then also 2."bb

aa

bb

aa

𝛿𝛿 aa bb
11 11,, 22{{ }} 33{{ }}
22 33{{ }} ∅∅

33 11,, 22{{ }} 22{{ }}

S S == E E 11 == 11,, 22(({{ }})) {{ }}

We could have made We could have made
state 1 accepting too.state 1 accepting too.

"first do "first do then any then any 's."'s."pp,, cc == 𝛿𝛿(()) cc 𝜖𝜖

𝛥𝛥 SS,, aa == 11,, aa ∪∪(()) 𝛿𝛿(()) 22,, aa == 11,, 22 ∪∪ 33 == 11,, 22,, 33𝛿𝛿(()) {{ }} {{ }} {{ }}
𝛥𝛥 SS,, bb == 11,, bb ∪∪(()) 𝛿𝛿(()) 22,, bb == 33 ∪∪ == 33𝛿𝛿(()) {{ }} {{ }} {{ }}

State State counts as "new" state even though counts as "new" state even though has it. has it.33{{ }} NN

𝛥𝛥 11,, 22,, 33 ,, aa == 11,, 22 ∪∪ 33 ∪∪ 11,, 22 == 11,, 22,, 33(({{ }})) {{ }} {{ }} {{ }} {{ }}

Must be Must be since we got to the "omni" state on since we got to the "omni" state on ..11,, 22,, 33{{ }} aa

𝛥𝛥 11,, 22,, 33 ,, bb == 33 ∪∪∅∅∪∪ 22 == 22,, 33(({{ }})) {{ }} {{ }} {{ }}

Not "omni" but is new. Doing state {3} next:Not "omni" but is new. Doing state {3} next:
. Not new, back to . Not new, back to ..𝛥𝛥 33 ,, aa == 33,, aa == 11,, 22(({{ }})) 𝛿𝛿(()) {{ }} SS

. . Is newIs new. (And is trouble). (And is trouble)𝛥𝛥 33 ,, bb == 33,, bb == 22(({{ }})) 𝛿𝛿(()) {{ }}

𝛥𝛥 22,, 33 ,, aa == 33 ∪∪ 11,, 22 == 11,, 22,, 33(({{ }})) {{ }} {{ }} {{ }}

𝛥𝛥 22,, 33 ,, bb == ∅ ∅∪∪ 22 == 22(({{ }})) {{ }} {{ }} Just {2} left now.Just {2} left now.
 Not new. Not new.𝛥𝛥 22 ,, aa == 22,, aa == 33(({{ }})) 𝛿𝛿(()) {{ }}

 So So has a dead state. has a dead state.𝛥𝛥 22 ,, bb == 22,, bb == ∅ ∅(({{ }})) 𝛿𝛿(()) MM

, , . BFS has closed: done.. BFS has closed: done.𝛥𝛥 ∅∅,, aa == ∅ ∅(()) 𝛥𝛥 ∅∅,, bb == ∅ ∅(())

States States and and 11{{ }} 11,, 33{{ }}
are not possible in are not possible in ..MM

"anything"anythingFF ==

with 2" = with 2" = 11,, 22,, 33 ,,{{{{ }}

11,, 22 ,, 22,, 33 ,, 22{{ }} {{ }} {{ }}}}

This is an accepting state of This is an accepting state of MM

11,, 22{{ }}

33{{ }}

bb
aa

bb

aa

11,, 22,, 33{{ }}
aa

aa

22
22,, 33{{ }}

bb

aa

bb

∅∅

aa,, bb
bb

DFA DFA M M ==

StartStart

Note that the original NFA Note that the original NFA can canNN

process process from from to any one of its to any one of itsaa ss

three states. But three states. But can't process can't processNN

 from any of its three states. from any of its three states.bbbbbb

This DFA This DFA has a dead state but has a dead state butMM
does not have any eternallydoes not have any eternally
accepting (cluster of) states.accepting (cluster of) states.

More on how the states of the DFA tell what the NFA can and cannot process:More on how the states of the DFA tell what the NFA can and cannot process:
• • The NFA cannot process the string The NFA cannot process the string from its start state at all. However you try, you come to from its start state at all. However you try, you come to bbbbbb

the NFA state 2 being unable to process a the NFA state 2 being unable to process a . Nor can it process . Nor can it process from any other state. from any other state.bb bbbbbb

• • However, However, can process can process from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(())

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(())(())

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(())(())

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(({{ }}))

• • But in the string But in the string , even though the initial , even though the initial "turns on all three lightbulbs of "turns on all three lightbulbs of ", the final", the final x x == abbb abbb aa NN

 still cannot be processed by still cannot be processed by . The DFA . The DFA does process it via the computation does process it via the computation bbbbbb NN MM

, but that computation ends at , but that computation ends at ,, SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(({{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }})) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.

Another example [try for Another example [try for : The "Leap of Faith" NFAs : The "Leap of Faith" NFAs for any for any ::kk == 2 or 32 or 3]] NNkk k k >> 1 1

Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string matchesmatches a given regexp a given regexp ::xx 𝛼𝛼

1. 1. Convert Convert into an equivalent NFA into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert into an equivalent DFA into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run on on . If it accepts, say ". If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient. The reason is that step 2 can blow up. An intuitive. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular that that xx xx
was given.was given.

There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states that are actually that are actually RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular . We have . We have to begin with. to begin with. xx RR == S S == E E ss00 (())

 To build each To build each from the previous from the previous , iterate through every , iterate through every and union together all the sets and union together all the sets RRii RRi-1i-1 q q ∈∈ RRi-1i-1

. If . If has has states---which roughly equals the number of operations in states---which roughly equals the number of operations in ---then that takes---then that takes qq,, xx𝛿𝛿((ii)) NN𝛼𝛼 kk 𝛼𝛼

order order steps. This is at worst cubic in the length steps. This is at worst cubic in the length of of and and together, so this counts as together, so this counts as nn ⋅⋅ kk ⋅⋅ kk nn ++ kkOO(()) xx 𝛼𝛼

a a polynomial-time algorithmpolynomial-time algorithm. It is in fact the algorithm actually used by the . It is in fact the algorithm actually used by the grepgrep command on command on
Linux/UNIX. (The tilde above the Linux/UNIX. (The tilde above the means ignoring factors of means ignoring factors of .).)OO nnloglog

Generalized NFAs (GNFAs)Generalized NFAs (GNFAs)

I view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs. TheI view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs. The
meaning of an arc from a state meaning of an arc from a state to a state to a state is "all ways we know so far to get from state is "all ways we know so far to get from state to state to state , in, in pp qq pp qq

.

00,, 11

11

00 00 00

11 11 11

kk -- 1 arcs1 arcs

LL NN == 00 ++ 11 11 00 ++ 11((kk)) (())** (())k-1k-1

..== x x ∈∈ 00,, 11 :: the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA (will be proved next week): Whereas the NFA has only has only NNkk kk ++ 11

states, the smallest DFA states, the smallest DFA such that such that requires requires states. states. MMkk LL MM == L L NN((kk)) ((kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm. in the NFA-to-DFA algorithm.

however many steps." By getting from state however many steps." By getting from state to state to state we mean a string processed along the way, so we mean a string processed along the way, so pp qq

our notation our notation can process can process from from to to comes into play. We will see that this comes into play. We will see that this LL == w w ∈∈ 𝛴 𝛴 :: N Np,qp,q {{ ** ww pp qq}}

language is always regular "in the final analysis." Moreover, insofar as language is always regular "in the final analysis." Moreover, insofar as or one single character or one single character or or 𝜖𝜖 aa bb
(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA
anyway. And a loop or edge labeled anyway. And a loop or edge labeled could really be the non-basic regular expression could really be the non-basic regular expression
anyway.anyway.

aa,, bb aa∪∪ bb

 So let us generalize arcs to any regular expressions over the alphabet So let us generalize arcs to any regular expressions over the alphabet , letting , letting Regexp(Regexp(stand for stand for 𝛴𝛴 𝛴𝛴))
that.that.

DefinitionDefinition: A generalized NFA (GNFA) is a 5-tuple : A generalized NFA (GNFA) is a 5-tuple where where are the same are the same G G == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) QQ,,𝛴𝛴,, ss,, FF

as in an NFA but now as in an NFA but now ..𝛿 𝛿 ⊆⊆ Q Q ×× RegexpRegexp 𝛴𝛴 ×× Q Q(((())))

DefinitionDefinition: A sequence : A sequence is a is a == qq ,, uu ,, qq qq ,, uu ,, qq qq ,, uu ,, qq ⋯⋯ qq ,, uu qq qq ,, uu ,, qqcc [[00 11 11]][[11 22 22]][[22 33 33]] [[t-2t-2 t-1t-1 t-1t-1]][[t-1t-1 tt tt]]

valid computationvalid computation if for each if for each , , , there is an instruction , there is an instruction such that the such that the ii 1 1 ≤≤ i i ≤≤ tt qq ,,𝛼𝛼,, qq ∈∈ 𝛿 𝛿((i-1i-1 ii))

string string matches the regular expression matches the regular expression . The . The string processedstring processed by the computation is the string by the computation is the string uuii 𝛼𝛼

, which might be shorter or longer than , which might be shorter or longer than . Then we say the GNFA . Then we say the GNFA can can u u == u u ⋅⋅ uu ⋅⋅ uu ⋯⋯ uu ⋅⋅ uu11 22 33 t-1t-1 tt tt GG

process process from from to to and write and write (with (with understood). Then as before, understood). Then as before,uu qq00 qqtt u u ∈∈ L Lqq ,q,q00 tt GG

..LL GG == LL(()) ⋃⋃

f∈Ff∈F
s,fs,f

The idea can be put across less technically even when we use abstract regular expressions The idea can be put across less technically even when we use abstract regular expressions 𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
(alpha, beta, gamma, eta).(alpha, beta, gamma, eta).

These become more user-friendly base cases than what rthe text does for the FA-to-regexp proof inThese become more user-friendly base cases than what rthe text does for the FA-to-regexp proof in
section 1.3, which will complete the proof of Kleene's Theorem of equivalence on Thursday.section 1.3, which will complete the proof of Kleene's Theorem of equivalence on Thursday.

Notes for Thursday (now posted separately, will be edited up or down a bit)Notes for Thursday (now posted separately, will be edited up or down a bit)

[I didn't quite cover the above in time on Tue. 2/23, but my notes were planning to reiterate it anyway.[I didn't quite cover the above in time on Tue. 2/23, but my notes were planning to reiterate it anyway.
The purpose of using 2-state GNFAs as the base case is that (i) they save you the trouble of having toThe purpose of using 2-state GNFAs as the base case is that (i) they save you the trouble of having to
make a new state state, (ii), they often save having to make a new single final state as well, and (iii)make a new state state, (ii), they often save having to make a new single final state as well, and (iii)
they always save the final step of the text's algorithm which often involves having to cut and pastethey always save the final step of the text's algorithm which often involves having to cut and paste
excruciatingly long regular expressions. On HWs and exams you'll be able to save that pencil-pushingexcruciatingly long regular expressions. On HWs and exams you'll be able to save that pencil-pushing
by just saying the single Greek letters and saying whether the language is by just saying the single Greek letters and saying whether the language is , , , or , or .].]LLs,ss,s LLs,fs,f LL ∪∪ LLs,ss,s s,fs,f

11

22

𝛼𝛼

𝛽𝛽

𝛾𝛾

𝜂𝜂

LL == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂1,11,1
** **

LL == L L ⋅⋅ 𝛽𝛾𝛽𝛾 == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾1,21,2 1,11,1
** ** ** **

LL == 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽2,22,2
** **

LL == L L ⋅⋅ 𝜂𝛼𝜂𝛼 == 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽 𝜂𝛼𝜂𝛼2,12,1 2,22,2
** ** ** **

 also equals also equals LL1,21,2 𝛼𝛼 𝛽𝛽 ⋅⋅ LL == 𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽 ..**
2,22,2

** ** **

