
CSE396 Lecture Tue. 2/23: NFAs, DFAs, and GNFAsCSE396 Lecture Tue. 2/23: NFAs, DFAs, and GNFAs
  
Picking up with the long NFA-to-DFA example:Picking up with the long NFA-to-DFA example:
  

  
The whole DFA:The whole DFA:
  

  
[Tue. 2/23 will pick up here, then do the example with [Tue. 2/23 will pick up here, then do the example with 's.]'s.]𝜖𝜖

For any string For any string , the set-state of the DFA after processing , the set-state of the DFA after processing  equals the set of states that  equals the set of states that  can process can process  xx xx NN

 to.  Thus, for instance: to.  Thus, for instance:xx

• •  can process the string  can process the string  to any of its states  to any of its states , 2, and all the way across to , 2, and all the way across to ..NN bbabba 11 ff
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"Transcribing""Transcribing"
the regularthe regular
expression expression 
"is" the strategy."is" the strategy.

qq ,, qq  is impossible is impossible..   Why  Why??{{ 22 33 }}

𝜖𝜖

"Whenever "Whenever , then also , then also qq44 qq .. ""55

qq ,, bb   ==   qq ,, qq𝛿𝛿(( 55 )) {{ 44 55 }}
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Since the NFA Since the NFA  had only had onlyNN

one final state one final state , the final, the finalff

states of the DFA states of the DFA  are areMM

just those sets that have just those sets that have ..ff



• •  can process  can process , however, only back to its start state , however, only back to its start state ..NN bbabbbab ss

• •  accepts  accepts  but cannot process  but cannot process ..NN aaaaaa aaaaaaaa

• • The shortest string that The shortest string that  can process to four different states is  can process to four different states is ..NN bbbbbb

• • The shortest string that goes to 4 states, one of which is The shortest string that goes to 4 states, one of which is , however, is , however, is ..ff bbbbabbbba

• • There is no string that There is no string that  can process to more than four different states---in particular, there is no can process to more than four different states---in particular, there is no  NN

string that "lights up" every state, because the "omni" set-state string that "lights up" every state, because the "omni" set-state  was was  ss,, 11,, 22,, 33,, 44,, 55,, ff   ==  Q Q{{ }}
never encountered in the breadth-first search.never encountered in the breadth-first search.  

• • There is no state that guarantees acceptance: every state can reach a rejecting state with moreThere is no state that guarantees acceptance: every state can reach a rejecting state with more  
chars.  In fact, every state has a path to the dead state.chars.  In fact, every state has a path to the dead state.

  
In other cases, the DFA In other cases, the DFA  may never reach a dead state.  It might (also) have an "eternal state", may never reach a dead state.  It might (also) have an "eternal state",  MM
meaning an accepting state that loops to itself.  The "omni" state, even when reached, need not bemeaning an accepting state that loops to itself.  The "omni" state, even when reached, need not be  
eternal (though if eternal (though if  has any eternal state, "omni" is eternal).   has any eternal state, "omni" is eternal).   can even have a cluster of accepting can even have a cluster of accepting  MM MM
states that cycle amongst themselves without ever going to a rejecting state---though such a clusterstates that cycle amongst themselves without ever going to a rejecting state---though such a cluster  
can then be "condensed" into a single eternal state.  This last possibility also tells you that the DFAcan then be "condensed" into a single eternal state.  This last possibility also tells you that the DFA  
cranked out by the algorithm is not necessarily optimal in size.cranked out by the algorithm is not necessarily optimal in size.    
  
Proof of the TheoremProof of the Theorem
Recall definitions and specifications of the DFA Recall definitions and specifications of the DFA  from before: from before:  M M ==   QQ,,𝛴𝛴,,𝛥𝛥,, SS,,FF(( ))
  
Epsilon closureEpsilon closure: : EE RR   ==   rr ::  for some q  for some q ∈∈  R R,,  N can process 𝜖 from q to r N can process 𝜖 from q to r(( )) {{ }}

  
• • QQ  ==   possible R possible R ⊆⊆  Q Q ;;{{ }}

• •  is the same; is the same;𝛴𝛴

• • ;;S S ==  E E ss(( ))

• • FF  ==   R R ∈∈   QQ ::  R  R ∩∩  F  F ≠≠  ∅ ∅ ..{{ }}
  

you can get from you can get from  to  to  by first processing  by first processing  at  at , then doing any , then doing any -arcs-arcs ..pp,, cc   ==   rr ::   𝛿𝛿(( )) {{ pp rr cc pp 𝜖𝜖 }}
  

• • For any For any  (i.e.,  (i.e.,  and  and  is possible) and  is possible) and definedefinePP ∈∈ QQ P P ⊆⊆  Q Q PP cc ∈∈ 𝛴 𝛴 

  ..𝛥𝛥 PP,, cc   ==   pp,, cc(( )) ⋃⋃
  

p∈Pp∈P

𝛿𝛿(( ))

  
How do we prove How do we prove ?  What we want to prove is that ?  What we want to prove is that for every string for every string , the state , the state  that that  LL MM   ==  L L NN(( )) (( )) xx RRxx

 is in equals the set of states  is in equals the set of states  such that  such that  can process  can process  from  from  to  to .  Then the definition of the final.  Then the definition of the final  MM rr NN xx ss rr

states states  of  of  kicks in to say that the languages are equal. kicks in to say that the languages are equal.FF MM
  

• • Define Define  to be the statement that this holds for all strings  to be the statement that this holds for all strings  of length  of length ..    GG ii(( )) xx ii

• • Then Then  says that the start state of  says that the start state of  should equal the set of states  should equal the set of states  such that  such that  can can  GG 00(( )) MM rr NN

process process  from  from  to  to .  Since this is exactly the meaning of .  Since this is exactly the meaning of , which is made the start state , which is made the start state   𝜖𝜖 ss rr EE ss(( )) SS

of of , the base case , the base case  holds. holds.MM GG 00(( ))

• • To prove To prove , then, we only need to show , then, we only need to show  for each  for each ..LL MM   ==  L L NN(( )) (( )) GG ii -- 11   ⟹⟹  G G ii(( )) (( )) ii

  

  



  
In the step In the step , the fact that , the fact that  is  is -closed sets up the assumption that -closed sets up the assumption that  in  in  is  is -closed.  The-closed.  The  i i ==  1 1 SS 𝜖𝜖 PP 𝛥𝛥 PP,, cc(( )) 𝜖𝜖

value value  is automatically  is automatically -closed, since -closed, since  so any trailing  so any trailing -arcs can count as part of-arcs can count as part of  𝛥𝛥 PP,, cc(( )) 𝜖𝜖 cc ⋅⋅ 𝜖𝜖   ==  c c** 𝜖𝜖

processing processing .  If we---.  If we---cc
  

• • assume assume  as our induction hypothesis, as our induction hypothesis,  GG ii -- 11(( ))

• • take the set take the set  which the property  which the property  refers to, and refers to, and  RRi-1i-1 GG ii -- 11(( ))

• • define define ,,  RR   ==  𝛥 𝛥 RR ,, xxii (( i-1i-1 ii))
  
---then we only need to show that ---then we only need to show that  has the property required for the conclusion  has the property required for the conclusion .  This is that .  This is that   RRii GG ii(( )) RRii

equals the set of states that equals the set of states that  can process the bits  can process the bits  to.  The core of the proof observes to.  The core of the proof observes  NN xx ⋯⋯ xx xx11 i-1i-1 ii

that:that:
  

 can process  can process  if and only if there is a state  if and only if there is a state  such that  such that  can process can process  NN xx xx ⋯⋯ xx xx  from s to r from s to r11 22 i-1i-1 ii pp NN

 from  from  to  to  (which by IH  (which by IH   includes includes  into  into ) and such that ) and such that  can process can process  xx xx ⋯⋯ xx11 22 i-1i-1 ss pp GG ii -- 11(( )) pp RRi-1i-1 NN

the char the char  from  from  to  to ..    xxii pp rr
  
Then by the inductive hypothesis Then by the inductive hypothesis , ,  equals the set of states  equals the set of states  such that  such that  can process can process  GG ii -- 11(( )) RRi-1i-1 qq NN

 from  from  to  to .  Now put .  Now put ..    xx ⋯⋯  x x11 i-1i-1 ss qq RR   ==  𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let .  Then .  Then for some for some .  By IH .  By IH , ,  can process  can process   r r ∈∈  R Rii r r ∈∈ qq,, xx   𝛿𝛿(( ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(( )) NN xx ⋯⋯  x x11 i-1i-1

from from  to  to .  And .  And  can process  can process  from  from  to  to  by definition of  by definition of .  So .  So  can process can process  ss qq NN xxii qq rr r r ∈∈ qq,, xx   𝛿𝛿(( ii)) NN

 from  from  to  to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose  can process  can process  from  from  to  to .  Then---and this is the key point---the processing.  Then---and this is the key point---the processing  NN xx ⋯⋯ xx11 ii ss rr

goes to some state goes to some state  just before the char  just before the char  is processed.  By IH  is processed.  By IH , ,  belongs to  belongs to ..    qq xxii GG ii -- 11(( )) qq RRi-1i-1

Moreover, Moreover,  because we first do the step that processed the char  because we first do the step that processed the char  at  at , then any, then any  r r ∈∈   qq,, xx𝛿𝛿(( ii)) xxii qq

trailing trailing -arcs.  Thus -arcs.  Thus , which means , which means ..𝜖𝜖 r r ∈∈  𝛥 𝛥 RR ,, xx(( i-1i-1 ii)) r r ∈∈  R Rii

Thus we have established that Thus we have established that  equals the set of states  equals the set of states  such that  such that  can process  can process  from  from  to to  RRii rr NN xx ⋯⋯ xx11 ii ss

.  This is the statement .  This is the statement , which is what we had to prove to make the induction go through.  This, which is what we had to prove to make the induction go through.  This  rr GG ii(( ))

finally proves the NFA-to-DFA part of Kleene's Theorem. finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒
  
More examples:More examples:
The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.The first one differs from the hand-drawn example after it in having 2 not 3 be the accepting state.
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aa DFA DFA M M ==

"Whenever 1"Whenever 1
then also 2."then also 2."bb

aa

bb

aa

𝛿𝛿 aa bb
11 11,, 22{{ }} 33{{ }}
22 33{{ }} ∅∅

33 11,, 22{{ }} 22{{ }}

S S ==  E E 11   ==   11,, 22(({{ }})) {{ }}

We could have made We could have made 
state 1 accepting too.state 1 accepting too.

"first do "first do  then any  then any 's."'s."pp,, cc   ==   𝛿𝛿(( )) cc 𝜖𝜖

𝛥𝛥 SS,, aa   ==   11,, aa ∪∪(( )) 𝛿𝛿(( )) 22,, aa == 11,, 22 ∪∪ 33 == 11,, 22,, 33𝛿𝛿(( )) {{ }} {{ }} {{ }}
𝛥𝛥 SS,, bb   ==   11,, bb ∪∪(( )) 𝛿𝛿(( )) 22,, bb == 33 ∪∪ == 33𝛿𝛿(( )) {{ }} {{ }} {{ }}

State State  counts as "new" state even though  counts as "new" state even though  has it. has it.33{{ }} NN

𝛥𝛥 11,, 22,, 33 ,, aa   ==   11,, 22 ∪∪ 33 ∪∪ 11,, 22   ==   11,, 22,, 33(({{ }} )) {{ }} {{ }} {{ }} {{ }}

Must be Must be  since we got to the "omni" state on  since we got to the "omni" state on ..11,, 22,, 33{{ }} aa

𝛥𝛥 11,, 22,, 33 ,, bb   ==   33 ∪∪∅∅∪∪ 22   ==   22,, 33(({{ }} )) {{ }} {{ }} {{ }}

Not "omni" but is new.  Doing state {3} next:Not "omni" but is new.  Doing state {3} next:
.  Not new, back to .  Not new, back to ..𝛥𝛥 33 ,, aa   ==   33,, aa   ==   11,, 22(({{ }} )) 𝛿𝛿(( )) {{ }} SS

.    .    Is newIs new. (And is trouble). (And is trouble)𝛥𝛥 33 ,, bb   ==   33,, bb   ==   22(({{ }} )) 𝛿𝛿(( )) {{ }}

𝛥𝛥 22,, 33 ,, aa   ==   33 ∪∪ 11,, 22   ==   11,, 22,, 33(({{ }} )) {{ }} {{ }} {{ }}

𝛥𝛥 22,, 33 ,, bb   ==  ∅ ∅∪∪ 22   ==   22(({{ }} )) {{ }} {{ }} Just {2} left now.Just {2} left now.
  Not new.  Not new.𝛥𝛥 22 ,, aa   ==   22,, aa   ==   33(({{ }} )) 𝛿𝛿(( )) {{ }}

  So   So  has a dead state. has a dead state.𝛥𝛥 22 ,, bb   ==   22,, bb   ==  ∅ ∅(({{ }} )) 𝛿𝛿(( )) MM

, , .  BFS has closed: done..  BFS has closed: done.𝛥𝛥 ∅∅,, aa   ==  ∅ ∅(( )) 𝛥𝛥 ∅∅,, bb   ==  ∅ ∅(( ))

States States  and  and 11{{ }} 11,, 33{{ }}
are not possible in are not possible in ..MM

"anything"anythingFF  ==   

with 2" = with 2" = 11,, 22,, 33 ,,{{{{ }}

11,, 22 ,, 22,, 33 ,, 22{{ }} {{ }} {{ }}}}

This is an accepting state of This is an accepting state of MM
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DFA DFA M M ==

StartStart

Note that the original NFA Note that the original NFA  can canNN

process process  from  from  to any one of its to any one of itsaa ss

three states.  But three states.  But  can't process can't processNN

 from any of its three states. from any of its three states.bbbbbb

This DFA This DFA  has a dead state but has a dead state butMM
does not have any eternallydoes not have any eternally
accepting (cluster of) states.accepting (cluster of) states.



More on how the states of the DFA tell what the NFA can and cannot process:More on how the states of the DFA tell what the NFA can and cannot process:
• • The NFA cannot process the string The NFA cannot process the string  from its start state at all.  However you try, you come to from its start state at all.  However you try, you come to  bbbbbb

the NFA state 2 being unable to process a the NFA state 2 being unable to process a .  Nor can it process .  Nor can it process  from any other state. from any other state.bb bbbbbb

• • However, However,  can process  can process  from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(( ))

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(( ))(( ))

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(( ))(( ))

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(( {{ }}))

• • But in the string But in the string , even though the initial , even though the initial  "turns on all three lightbulbs of  "turns on all three lightbulbs of ", the final", the final  x x ==  abbb abbb aa NN

 still cannot be processed by  still cannot be processed by .  The DFA .  The DFA  does process it via the computation does process it via the computation  bbbbbb NN MM

, but that computation ends at , but that computation ends at ,,  SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(( {{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }} )) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.

  

  



  
Another example [try for Another example [try for : The "Leap of Faith" NFAs : The "Leap of Faith" NFAs  for any  for any ::kk == 2 or 32 or 3]] NNkk k k >>  1 1

  
Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string   matchesmatches a given regexp  a given regexp ::xx 𝛼𝛼

1. 1. Convert Convert  into an equivalent NFA  into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert  into an equivalent DFA  into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run  on  on .  If it accepts, say ".  If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

  
This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient.  The reason is that step 2 can blow up.  An intuitive.  The reason is that step 2 can blow up.  An intuitive  
reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that  
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular  that that  xx xx
was given.was given.    
  
There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states  that are actually that are actually  RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular .  We have .  We have  to begin with. to begin with.  xx RR   ==  S  S ==  E E ss00 (( ))

 To build each  To build each  from the previous  from the previous , iterate through every , iterate through every  and union together all the sets and union together all the sets  RRii RRi-1i-1 q q ∈∈ RRi-1i-1

.  If .  If  has  has  states---which roughly equals the number of operations in  states---which roughly equals the number of operations in ---then that takes---then that takes  qq,, xx𝛿𝛿(( ii)) NN𝛼𝛼 kk 𝛼𝛼

order order  steps.  This is at worst cubic in the length  steps.  This is at worst cubic in the length  of  of  and  and  together, so this counts as together, so this counts as  nn ⋅⋅ kk ⋅⋅ kk nn ++ kkOO(( )) xx 𝛼𝛼

a a polynomial-time algorithmpolynomial-time algorithm.  It is in fact the algorithm actually used by the .  It is in fact the algorithm actually used by the grepgrep command on command on  
Linux/UNIX.  (The tilde above the Linux/UNIX.  (The tilde above the  means ignoring factors of  means ignoring factors of .).)OO nnloglog
  
Generalized NFAs (GNFAs)Generalized NFAs (GNFAs)
  
I view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs.  TheI view these as mathematical bookkeeping devices, not as "real" as NFAs, let alone DFAs.  The  
meaning of an arc from a state meaning of an arc from a state  to a state  to a state  is "all ways we know so far to get from state  is "all ways we know so far to get from state  to state  to state , in, in  pp qq pp qq

  

  

. . .. . .

00,, 11

11

00 00 00

11 11 11

kk -- 1 arcs1 arcs

LL NN   ==   00 ++ 11 11 00 ++ 11(( kk)) (( ))** (( ))k-1k-1

..==   x x ∈∈   00,, 11 ::  the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA  (will be proved next week): Whereas the NFA  has only  has only   NNkk kk ++ 11

states, the smallest DFA states, the smallest DFA  such that  such that  requires  requires  states.   states.  MMkk LL MM   ==  L L NN(( kk)) (( kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm.  in the NFA-to-DFA algorithm. 



however many steps."  By getting from state however many steps."  By getting from state  to state  to state  we mean a string processed along the way, so we mean a string processed along the way, so  pp qq

our notation our notation  can process  can process  from  from  to  to  comes into play.  We will see that this comes into play.  We will see that this  LL   ==   w w ∈∈  𝛴 𝛴 ::  N Np,qp,q {{ ** ww pp qq}}

language is always regular "in the final analysis."  Moreover, insofar as language is always regular "in the final analysis."  Moreover, insofar as  or one single character  or one single character  or  or   𝜖𝜖 aa bb
(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA(etc.) "is-a" basic regular expression, we start off with arcs labeled by regular expressions with an NFA  
anyway.  And a loop or edge labeled anyway.  And a loop or edge labeled  could really be the non-basic regular expression  could really be the non-basic regular expression   
anyway.anyway.  

aa,, bb aa∪∪ bb

 So let us generalize arcs to any regular expressions over the alphabet  So let us generalize arcs to any regular expressions over the alphabet , letting , letting Regexp(Regexp(  stand for stand for  𝛴𝛴 𝛴𝛴))
that.that.    
  
DefinitionDefinition: A generalized NFA (GNFA) is a 5-tuple : A generalized NFA (GNFA) is a 5-tuple  where  where  are the same are the same  G G ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) QQ,,𝛴𝛴,, ss,, FF

as in an NFA but now as in an NFA but now ..𝛿 𝛿 ⊆⊆   Q Q ××   RegexpRegexp 𝛴𝛴   ××  Q Q(( (( ))))
  
DefinitionDefinition: A sequence : A sequence  is a is a    ==   qq ,, uu ,, qq qq ,, uu ,, qq qq ,, uu ,, qq ⋯⋯ qq ,, uu qq qq ,, uu ,, qqcc [[ 00 11 11]][[ 11 22 22]][[ 22 33 33]] [[ t-2t-2 t-1t-1 t-1t-1]][[ t-1t-1 tt tt]]

valid computationvalid computation if for each  if for each , , , there is an instruction , there is an instruction  such that the such that the  ii 1 1 ≤≤  i  i ≤≤ tt qq ,,𝛼𝛼,, qq   ∈∈  𝛿 𝛿(( i-1i-1 ii))

string string  matches the regular expression  matches the regular expression .  The .  The string processedstring processed by the computation is the string by the computation is the string  uuii 𝛼𝛼

, which might be shorter or longer than , which might be shorter or longer than .  Then we say the GNFA .  Then we say the GNFA  can can  u u ==  u u ⋅⋅ uu ⋅⋅ uu ⋯⋯ uu ⋅⋅ uu11 22 33 t-1t-1 tt tt GG

process process  from  from  to  to  and write  and write  (with  (with  understood).  Then as before, understood).  Then as before,uu qq00 qqtt u u ∈∈  L Lqq ,q,q00 tt GG

..LL GG   ==   LL(( )) ⋃⋃
  

f∈Ff∈F
s,fs,f

  
The idea can be put across less technically even when we use abstract regular expressions The idea can be put across less technically even when we use abstract regular expressions   𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
(alpha, beta, gamma, eta).(alpha, beta, gamma, eta).    

These become more user-friendly base cases than what rthe text does for the FA-to-regexp proof inThese become more user-friendly base cases than what rthe text does for the FA-to-regexp proof in  
section 1.3, which will complete the proof of Kleene's Theorem of equivalence on Thursday.section 1.3, which will complete the proof of Kleene's Theorem of equivalence on Thursday.
  
Notes for Thursday (now posted separately, will be edited up or down a bit)Notes for Thursday (now posted separately, will be edited up or down a bit)
  
[I didn't quite cover the above in time on Tue. 2/23, but my notes were planning to reiterate it anyway.[I didn't quite cover the above in time on Tue. 2/23, but my notes were planning to reiterate it anyway.    
The purpose of using 2-state GNFAs as the base case is that (i) they save you the trouble of having toThe purpose of using 2-state GNFAs as the base case is that (i) they save you the trouble of having to  
make a new state state, (ii), they often save having to make a new single final state as well, and (iii)make a new state state, (ii), they often save having to make a new single final state as well, and (iii)  
they always save the final step of the text's algorithm which often involves having to cut and pastethey always save the final step of the text's algorithm which often involves having to cut and paste  
excruciatingly long regular expressions.  On HWs and exams you'll be able to save that pencil-pushingexcruciatingly long regular expressions.  On HWs and exams you'll be able to save that pencil-pushing  
by just saying the single Greek letters and saying whether the language is by just saying the single Greek letters and saying whether the language is , , , or , or .].]LLs,ss,s LLs,fs,f LL ∪∪ LLs,ss,s s,fs,f

  

  

11

22

𝛼𝛼

𝛽𝛽

𝛾𝛾

𝜂𝜂

LL   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂1,11,1
** **

LL   ==  L L ⋅⋅ 𝛽𝛾𝛽𝛾   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾1,21,2 1,11,1
** ** ** **

LL   ==   𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽2,22,2
** **

LL   ==  L L ⋅⋅ 𝜂𝛼𝜂𝛼   ==   𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽 𝜂𝛼𝜂𝛼2,12,1 2,22,2
** ** ** **

 also equals  also equals LL1,21,2 𝛼𝛼 𝛽𝛽 ⋅⋅ LL   ==  𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽 ..**
2,22,2

** ** **


