
CSE396 Thursday, March 4: Myhill-Nerode Examples and ImplicationsCSE396 Thursday, March 4: Myhill-Nerode Examples and Implications
  
Picking up with a review of the "proof script" and the spears-and-dragons example---and recalling thatPicking up with a review of the "proof script" and the spears-and-dragons example---and recalling that  
the logical statement we need to prove after making a good choice of the logical statement we need to prove after making a good choice of  is: is:SS
  

for allfor all   ( ( ), ), there existsthere exists   such that  such that ..xx,, yy ∈∈ SS x x ≠≠  y y z z ∈∈  𝛴 𝛴** AA xzxz   ≠≠  A A yzyz(( )) (( ))
  
Example 4: Example 4: Suppose we "upgrade" the spears-and-dragons game to allow the Player to hold arbitrarilySuppose we "upgrade" the spears-and-dragons game to allow the Player to hold arbitrarily  
many spears.  The Player still loses a spear for each dragon killed.  Recall the alphabet is many spears.  The Player still loses a spear for each dragon killed.  Recall the alphabet is   
withwith  

00,, $$,, DD{{ }}

 standing for empty room,  standing for empty room,  for spear, and  for spear, and  for dragon.  We can prove that the resulting language  for dragon.  We can prove that the resulting language   00 $$ DD AA

is nonregular even without specifying exactly what is nonregular even without specifying exactly what  is, and while ignoring the presence of  is, and while ignoring the presence of ..    AA 00

  
TakeTake  _________ _________     ______________.   "Clearly   ______________.   "Clearly  is infinite." is infinite."S S ==   $$** SS

Let anyLet any   (such that  (such that ) ) be givenbe given.  Then we can helpfully write .  Then we can helpfully write ___ ___  ____ and ____ and  xx,, yy ∈∈ SS xx ≠≠ yy x x ==   $$mm

____ ____  ______ where ____  ______ where ____ wlog.wlog.y y ==   $$nn m m <<  n  n 

TakeTake  ____ ____  ______. Then  ______. Then  because _____  because _____  which is which is    z z ==   DDnn AA xzxz   ≠≠  A A yzyz(( )) (( )) xz xz ==   $$ DDmm nn

not in not in  because  because  so the Player gets killed, but  so the Player gets killed, but  which is in  which is in  since the since the  AA m m <<  n n yz yz ==   $$ DDnn nn AA
Player kills exactly the possible number of dragons and survives with zero spears left overPlayer kills exactly the possible number of dragons and survives with zero spears left over  
______.______.

Since Since  and  and  are an arbitrary pair from  are an arbitrary pair from , ,  is PD for  is PD for , and since , and since  is infinite,  is infinite,  is nonregular by the is nonregular by the  xx yy SS SS AA SS AA

Myhill-Nerode Theorem.  Myhill-Nerode Theorem.  ..☒☒
  
OK, we don't have to keep writing the proofs with fill-in-the-blank lines:OK, we don't have to keep writing the proofs with fill-in-the-blank lines:
  
Example 5Example 5: :  is a balanced string of parentheses is a balanced string of parentheses ..BAL BAL ==   xx ∈∈ ,, ::  x x{{ {{(( ))}}** }}

  
[Side example: If you have [Side example: If you have , then this is string is actually , then this is string is actually  equivalent to  equivalent to the empty stringthe empty string.  If.  If  (((((()))))) ∼∼ BALBAL

you follow it by you follow it by  then the whole thing  then the whole thing  is balanced just like  is balanced just like  is by itself. is by itself.(())(())(()) (((((())))))(())(())(()) (())(())(())

And if you have And if you have , then this is string is actually , then this is string is actually  equivalent to the string " equivalent to the string " "  If you follow it by"  If you follow it by  (((((((()))))) ∼∼ BALBAL ((

 then the whole thing  then the whole thing  has an excess of one  has an excess of one  just like  just like  is by itself.] is by itself.](())(())(()) (((((((())))))(())(())(()) (( (((())(())(())

  
  
MNT proofMNT proof::
Take Take .  Clearly .  Clearly  is infinite.  Let any  is infinite.  Let any , , , be given.  Then we can write , be given.  Then we can write ,,  S S ==   ((** SS xx,, yy ∈∈ SS xx ≠≠ yy x x ==   ((mm

 where  where  and  and .  Take .  Take .  Then .  Then  is in  is in , but , but  is is  y y ==   ((nn mm,, n n ≥≥  0 0 mm ≠≠ nn z z ==   ))mm xz xz ==   ((mm))mm BALBAL yz yz ==   ((nn))mm

not in not in  since  since  makes it unbalanced, so  makes it unbalanced, so .  Since .  Since  are arbitrary, are arbitrary,  BALBAL mm ≠≠ nn BALBAL xzxz   ≠≠  BAL BAL yzyz(( )) (( )) xx,, yy ∈∈ SS

 is PD for  is PD for , and since , and since  is infinite,  is infinite,  is nonregular by MNT.   is nonregular by MNT.  ..SS BALBAL SS BALBAL ☒☒
  
  
Example 6Example 6: How about : How about  can be closed to make a balanced string of can be closed to make a balanced string of  BAL' BAL' ==   xx ∈∈ ,, ::  x x{{ {{(( ))}}**

parenthesesparentheses ?  This is the same as saying ?  This is the same as saying .  The above proof doesn't work.  The above proof doesn't work  }} ∃∃uu ∈∈ ,, xuxu ∈∈ BALBAL{{(( ))}}**

  

  



since we could have since we could have  so that  so that  can be closed by appending  can be closed by appending .  But if.  But if  m m <<  n n yz yz ==   ((nn))mm u u ==   ))n-mn-m

 (which you can alternatively assert "wlog.") that wouldn't work.  In fact, I prefer to keep  (which you can alternatively assert "wlog.") that wouldn't work.  In fact, I prefer to keep   n n <<  m m m m <<  n n

to mimic alphabetical order and change the choice of to mimic alphabetical order and change the choice of  in the proof instead. in the proof instead.zz
  
Take Take .  Clearly .  Clearly  is infinite.  Let any  is infinite.  Let any , , , be given.  Then we can write , be given.  Then we can write ,,  S S ==   ((** SS xx,, yy ∈∈ SS xx ≠≠ yy x x ==   ((mm

 where  where  and wlog.  and wlog. .  Take .  Take .  Then .  Then  is not in  is not in  since the since the  y y ==   ((nn mm,, nn ≥≥ 00 m m << nn z z ==   ))nn xz xz ==   ((mm))nn BAL'BAL'

excess of right parens cannot be fixed, but excess of right parens cannot be fixed, but  is in  is in , so , so .  Since.  Since  yz yz ==   ((nn))nn BAL'BAL' BAL'BAL' xzxz   ≠≠  BAL' BAL' yzyz(( )) (( ))

 are arbitrary,  are arbitrary,  is an infinite PD set for  is an infinite PD set for , so , so  is nonregular by MNT.   is nonregular by MNT.  ..xx,, yy ∈∈ SS SS BAL'BAL' BAL'BAL' ☒☒
  
In fact, In fact,  is really the same as the language of "spears and dragons with unlimited spears", reading is really the same as the language of "spears and dragons with unlimited spears", reading  BAL'BAL'

'(' as a spear, ')' as a dragon, and ignoring empty rooms.'(' as a spear, ')' as a dragon, and ignoring empty rooms.  
  
  

Example 7Example 7: To come back to an example in the text, try : To come back to an example in the text, try  where where  A A ==   wwww ::  w  w ∈∈  𝛴 𝛴   ::   ||ww|| is odd is odd**

again again .  Over any alphabet of size .  Over any alphabet of size  or more, this language is often called DOUBLEWORD. or more, this language is often called DOUBLEWORD.    𝛴 𝛴 ==   00,, 11{{ }} 22

When we cover the "CFL Pumping Lemma" in ch. 2 we will see that it is not even a "CFL" (whichWhen we cover the "CFL Pumping Lemma" in ch. 2 we will see that it is not even a "CFL" (which  
includes all regular languages), but for now we'll just prove it's nonregular.  We can essentially includes all regular languages), but for now we'll just prove it's nonregular.  We can essentially plagiarizeplagiarize
 re-use the proof for the palindrome language (but by the way:  re-use the proof for the palindrome language (but by the way:   isis a CFL). a CFL).    PALPAL
  
TakeTake  _________ _________     ______________.   "Clearly   ______________.   "Clearly  is infinite." is infinite."S S ==   00** SS

Let anyLet any   (such that  (such that ) ) be givenbe given.  Then we can helpfully write .  Then we can helpfully write ___ ___  ____ and ____ and  xx,, yy ∈∈ SS xx ≠≠ yy x x ==   00mm

____ ____  ______ where ____  ______ where ____ _____._____.      y y ==   00nn mm ≠≠ n n 

TakeTake  ____ ____  ______.  Then  ______.  Then  because _____  because _____     z z ==   1100 11mm AA xzxz   ≠≠  A A yzyz(( )) (( )) xz xz ==  0 0 1100 11mm mm

which is in which is in , but , but  which is not in  which is not in  since  since   and the only possible way toand the only possible way to  AA yz yz ==  0 0 1100 11nn mm AA mm ≠≠ nn

make a double word is to break after the first make a double word is to break after the first ..11

Since Since  and  and  are an arbitrary pair from  are an arbitrary pair from , ,  is PD for  is PD for , and since , and since  is infinite,  is infinite,  is nonregular by the is nonregular by the  xx yy SS SS AA SS AA

Myhill-Nerode Theorem.  Myhill-Nerode Theorem.  ..☒☒
  
While cutting the mouse-copied fill-in-the-blank format, we can make the proof a little more elegant byWhile cutting the mouse-copied fill-in-the-blank format, we can make the proof a little more elegant by  
defining defining  slightly differently: slightly differently:SS
  
Take Take .  Clearly .  Clearly  is infinite.  Let any  is infinite.  Let any  ( ( ) be given.  Then we can write) be given.  Then we can write  S S ==   0000 11(( ))** SS xx,, yy ∈∈ SS xx ≠≠ yy

and and  where  where .  Take .  Take .  .  Then Then  because because  x x == 0000 1 1 (( ))mm y y ==   0000 11(( ))nn mm ≠≠ nn z z ==   0000 11(( ))mm AA xzxz   ≠≠  A A yzyz(( )) (( ))

 and  and  which is always odd, but which is always odd, but  xz xz ==   0000 11 0000 1 1 ∈∈  A A(( ))mm (( ))mm || 0000 11||  ==  2m 2m ++ 11(( ))mm

 since  since  and the only possible way to make a double word is to break and the only possible way to make a double word is to break  yz yz ==   0000 11 0000 1 1 ∉∉  A A(( ))nn (( ))mm m m ≠≠  n n

after the first after the first .  Since .  Since  are arbitrary,  are arbitrary,  is PD for  is PD for , and since , and since  is infinite,  is infinite,  by the by the  11 xx,, y y ∈∈  S S SS AA SS A A ∉∉   REGREG

Myhill-Nerode Theorem.   Myhill-Nerode Theorem.   ☒☒
  
What on earth is What on earth is ?  The curly font means it is a set of languages, which we call a ?  The curly font means it is a set of languages, which we call a classclass.  So .  So   REGREG REGREG

stands for the class of regular languages.  Beware: the languagestands for the class of regular languages.  Beware: the language
  

  

  



  isis in  in ..A'' A'' ==   xx ⋅⋅ yy ::  #0 #0 xx   ==  #1 #1 yy{{ (( )) (( ))}} REGREG

One help is to rewrite sets so they have only one named object to the left of the : (or |)One help is to rewrite sets so they have only one named object to the left of the : (or |)
A'' A'' ==   ww ::  w can be broken as w  w can be broken as w =:=:  xy such that #0 xy such that #0 xx   ==  #1 #1 yy{{ (( )) (( ))}}

Similarly, you can avoid confusing Similarly, you can avoid confusing  with  with  by remembering the definition of by remembering the definition ofAA22 xxxx ::  x  x ∈∈  A A{{ }}

.  So.  SoAA ⋅⋅B B ==   ww ::  w can be broken as w  w can be broken as w =:=:  x x ⋅⋅ y with x y with x ∈∈  A and y  A and y ∈∈  B B{{ }}

..AA   ==   ww ::  w can be broken as w  w can be broken as w =:=:  x x ⋅⋅ y with x y with x ∈∈  A and y  A and y ∈∈  A A22 {{ }}

  
  
Example 8Example 8: : What about DOUBLEWORD over a single-letter alphabet, say What about DOUBLEWORD over a single-letter alphabet, say ?  It is still defined?  It is still defined  𝛴 𝛴 ==   aa{{ }}

via via .  Let's try the same kind of strategy:.  Let's try the same kind of strategy:A A ==   wwww ::  w  w ∈∈  𝛴 𝛴**

  
""PoofPoof": Take ": Take .  Clearlty .  Clearlty  is infinite.  Let any  is infinite.  Let any  ( ( ) be given.  Then we can write) be given.  Then we can write  S S ==  a a** SS xx,, yy ∈∈ SS xx ≠≠ yy

and and  where  where .  Take .  Take .  .  Then Then  which is clearly a double-word, which is clearly a double-word,  x x == aa   mm y y ==  a ann mm ≠≠ nn z z ==  a amm xz xz ==  a a aamm mm

but but  which is not since  which is not since .  So .  So , so , so  is PD for  is PD for , and since , and since  is is  yz yz ==  a a aann mm n n ≠≠  m m AA xzxz   ≠≠  A A yzyz(( )) (( )) SS AA SS

infinite, infinite,  by the Myhill-Nerode Theorem.    by the Myhill-Nerode Theorem.   A A ∉∉   REGREG ☒☒
  
But wait: a string over But wait: a string over  is a double-word if and only if it is an even number of  is a double-word if and only if it is an even number of 's, so it matches 's, so it matches ,,  aa{{ }} aa aaaa(( ))**

so so  is regular after all.  What is wrong with the proof?  Note that  is regular after all.  What is wrong with the proof?  Note that , ,  is a possible pair is a possible pair  AA m m ==  3 3 n n ==  5 5

from from , that is, , that is, , ,  which makes  which makes .  Clearly .  Clearly  is a double-word, but it is a double-word, but it  SS x x ==  a a33 y y ==  a a55 z z ==  a a33 xz xz ==  a a aa33 33

looks like looks like  isn't.  At least that's the  isn't.  At least that's the intentintent of writing  of writing , and (here comes a jargon word) the, and (here comes a jargon word) the  yz yz ==  a a aa55 33 aa aa55 33

intensionintension by which we may read it.  But the  by which we may read it.  But the extensionextension is that  is that  is the string of eight  is the string of eight 's, which's, which  aa aa55 33 aa

without the power abbreviations is without the power abbreviations is .  This can be broken a different way as .  This can be broken a different way as , whose, whose  aaaaaaaaaaaaaaaa aaaaaaaa ⋅⋅ aaaaaaaa

intension is intension is .  Thus the string .  Thus the string  is a double-word after all, so the conclusions  is a double-word after all, so the conclusions  and thus and thus  aa ⋅⋅ aa44 44 aa aa55 33 yzyz ∉∉ AA

 were wrong.  Poof! were wrong.  Poof!    AA xzxz   ≠≠  A A yzyz(( )) (( ))

  
And since the language And since the language  is regular after all the proof can't be fixed.  Another common mistake is to is regular after all the proof can't be fixed.  Another common mistake is to  AA

"fudge" by restricing pairs from "fudge" by restricing pairs from  in ways that  in ways that do lose generalitydo lose generality.  For instance, if you asserted "Then.  For instance, if you asserted "Then  SS

we can write we can write and and  where one of  where one of  and  and  is even and the other is odd," then the is even and the other is odd," then the  x x == aa   mm y y ==  a ann mm nn

conclusions conclusions  and  and  giving  giving  would work---but you wouldn't have would work---but you wouldn't have  xzxz ∈∈ AA yzyz ∉∉ AA AA xzxz   ≠≠  A A yzyz(( )) (( ))

represented all the possibilities in the represented all the possibilities in the  requirement fairly. requirement fairly.∀∀xx,, yy ∈∈ SS,,  x x ≠≠ yy(( ))

  
Does that mean all languages over a single-letter alphabet are regular?  Our last lecture exampleDoes that mean all languages over a single-letter alphabet are regular?  Our last lecture example  
shows not.  The "wlog. shows not.  The "wlog. " part isn't strictly necessary, but it is convenient." part isn't strictly necessary, but it is convenient.mm << nn
  
  

Example 9Example 9: Define : Define , which equals , which equals ..A A ==   aa ::  N is a  N is a perfectperfect square squareNN aa ::  n  n ∈∈   NNnn 22

Take Take .  Clearlty .  Clearlty  is infinite.  Let any  is infinite.  Let any  ( ( ) be given.  Then we can write ) be given.  Then we can write andand  S S ==  a a** SS xx,, yy ∈∈ SS xx ≠≠ yy x x == aa   mm

 where wlog.  where wlog. .  Put .  Put .  The key numerical fact about perfect squares is that.  The key numerical fact about perfect squares is that  y y ==  a ann m m <<  n n k k ==  n n --mm

the gaps between successive squares grow bigger and bigger.  So we can find the gaps between successive squares grow bigger and bigger.  So we can find  such that such that  rr

, and for good measure, such that , and for good measure, such that .  Take .  Take .  Then.  Then  rr ++ 11   --  r r   >>  k k(( ))22 22 rr   >>  m m22 z z ==  a arr -m-m22

  

  



, which belongs to , which belongs to .  But.  Butxz xz ==  a a aa   ==  a amm rr -m-m22 rr22

AA

  ,,  yz yz ==  a a aa   ==  a a aa   ==  a ann rr -m-m22 k+mk+m rr -m-m22 rr +k+k22

which is not long enough to get up to which is not long enough to get up to , which is the next member of , which is the next member of .  So .  So , giving, giving    aa r+1r+1(( ))22

AA yz yz ∉∉  A A

 legitimately this time.   So  legitimately this time.   So  is PD for  is PD for , and since , and since  is infinite,  is infinite,  by the by the  AA xzxz   ≠≠  A A yzyz(( )) (( )) SS AA SS A A ∉∉   REGREG

Myhill-Nerode Theorem.   Myhill-Nerode Theorem.   ☒☒
  
By the way, one can state the MNT as "if By the way, one can state the MNT as "if  has an infinite PD set  has an infinite PD set  then  then  is not regular."  This is, is not regular."  This is,  AA SS AA

however, "Has-A" in the OOP sense, not in the sense of however, "Has-A" in the OOP sense, not in the sense of  being a subset of  being a subset of .  In example 9, .  In example 9,  is is  SS AA SS

actually a actually a supersetsuperset of  of ..    AA
  
  
Consequences of MNT for Languages that Consequences of MNT for Languages that AreAre Regular and Their DFAs Regular and Their DFAs
  
The full Myhill-Nerode Theorem---including the converse direction---says that every regular language The full Myhill-Nerode Theorem---including the converse direction---says that every regular language   AA

has a DFA has a DFA  whose states are the equivalence classes of the relation  whose states are the equivalence classes of the relation .  No DFA can have any.  No DFA can have any  MMAA ∼∼ AA

fewer states than the number fewer states than the number  of those classes---that follows from the original forward direction. of those classes---that follows from the original forward direction.  kk

Moreover, the components of Moreover, the components of  are all completely dictated by the relation.  Let us write  are all completely dictated by the relation.  Let us write  to denote to denote  MMAA xx[[ ]]

the equivalence class of a string the equivalence class of a string  (with the language  (with the language  understood); note that when  understood); note that when  we have we have  xx AA x x ∼∼  y yAA

 even though  even though .  Then we have .  Then we have  as the start state of  as the start state of  and and  xx   ==   yy[[ ]] [[ ]] x x ≠≠  y y ss   ==   𝜖𝜖AA [[ ]] MMAA

 for the final states.  The part I didn't say before is the rule for the final states.  The part I didn't say before is the ruleFF   ==   xx ::  x x ∈∈ AAAA {{[[ ]] }}

  
,,𝛿𝛿 xx ,, cc   == xcxcAA(([[ ]] )) [[ ]]

  
which is valid because using which is valid because using  in place of  in place of  when  when  doesn't change the value, because then doesn't change the value, because then  yy xx yy == xx[[ ]] [[ ]]

 anyway, since  anyway, since  implies  implies  for any char  for any char .  Anyway, the point is that .  Anyway, the point is that  too too  ycyc == xcxc[[ ]] [[ ]] x x ∼∼  y yAA xc xc ∼∼  yc ycAA cc 𝛿𝛿AA

is completely dictated.  The upshot is the following statement:is completely dictated.  The upshot is the following statement:
  
CorollaryCorollary (to the MNT): Every regular language  (to the MNT): Every regular language  has a minimum-size DFA  has a minimum-size DFA  that is unique. that is unique.AA MMAA

  
Unfortunately, the MNT does not do much to help you build an efficient Unfortunately, the MNT does not do much to help you build an efficient algorithmalgorithm to  to findfind  .  The one.  The one  MMAA

thing we do know is that once you thing we do know is that once you havehave a DFA  a DFA  such that  such that , no matter, no matter  MM == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) LL MM   ==  A A(( ))

how wasteful, you can always efficiently how wasteful, you can always efficiently refinerefine it down to the unique optimal  it down to the unique optimal .  The key definition.  The key definition  MMAA

uses the auxiliary notation uses the auxiliary notation  to mean the state that  to mean the state that  (being a DFA) uniquely ends at upon (being a DFA) uniquely ends at upon  𝛿𝛿 qq,, zz**(( )) MM

processing the string processing the string  from state  from state .  Inductively, .  Inductively,  for any  for any , and further for any string , and further for any string   zz qq 𝛿𝛿 qq,, 𝜖𝜖   ==  q q**(( )) qq ww

and char and char , , ..    cc 𝛿𝛿 qq,, wcwc   ==  𝛿 𝛿 𝛿𝛿 qq,, ww ,, cc**(( )) **(( ))

  
DefinitionDefinition: Two : Two statesstates   and  and  in a DFA  in a DFA are are distinguishabledistinguishable if there exists a string  if there exists a string  such that one such that one  pp qq M M zz

of of and and  belongs to  belongs to  and the other does not.  Otherwise they are  and the other does not.  Otherwise they are equivalentequivalent..𝛿𝛿 pp,, zz   **(( )) 𝛿𝛿 qq,, zz**(( )) FF
  
Two equivalent states must either be both accepting or both rejecting, because if they are one of eachTwo equivalent states must either be both accepting or both rejecting, because if they are one of each  
then they are immediately distinguished by the case then they are immediately distinguished by the case .  There is a simple sufficient condition: If .  There is a simple sufficient condition: If   z z ==  𝜖 𝜖 pp

  

  



and and  are bopth accepting or both rejecting, and if they go to the same states on the same chars (that are bopth accepting or both rejecting, and if they go to the same states on the same chars (that  qq

is, if is, if  for all  for all ), then they are equivalent.  But otherwise, it can be hard to tell), then they are equivalent.  But otherwise, it can be hard to tell  𝛿𝛿 pp,, cc   ==  𝛿 𝛿 qq,, cc(( )) (( )) cc ∈∈ 𝛴𝛴

equivalence.  There is an algorithm for determining this that is covered in some texts, and also appearsequivalence.  There is an algorithm for determining this that is covered in some texts, and also appears  
in some Algorithms texts as an example of "dynamic programming."in some Algorithms texts as an example of "dynamic programming."
  

  
We will focus on the distinguishing side instead.  The following are good self-study points about anyWe will focus on the distinguishing side instead.  The following are good self-study points about any  
DFA DFA  with language  with language ::MM A A ==  L L MM(( ))

  
• • If If  (in words, if  (in words, if  and  and  are distinctive for the language  are distinctive for the language ) then in any DFA ) then in any DFA  such that such that  x x ≁≁  y yAA xx yy AA MM

, ,  and  and  must be distinguishable states---not just different states. must be distinguishable states---not just different states.LL MM == AA(( )) 𝛿𝛿 ss,, xx**(( )) 𝛿𝛿 ss,, yy**(( ))

• • If If , then , then  and  and  must be equivalent states must be equivalent states..x x ∼∼  y yAA 𝛿𝛿 ss,, xx**(( )) 𝛿𝛿 ss,, yy**(( ))

• • If If  and  and  are distinguishable states, then  are distinguishable states, then ..𝛿𝛿 ss,, xx**(( )) 𝛿𝛿 ss,, yy**(( )) x x ≁≁  y yAA

• • If If  is a PD set for  is a PD set for , then the strings in , then the strings in  must all get processed to different states from  must all get processed to different states from ..SS AA SS ss
  
The last point leads us to consider PD sets in cases where languages The last point leads us to consider PD sets in cases where languages areare regular.  Let us revisit the regular.  Let us revisit the  
languages languages  for all  for all .  Recall that .  Recall that  always has an NFA  always has an NFA  of  of   LL   ==   00 ++ 11 11 00 ++ 11kk (( ))** (( ))k-1k-1 k k ≥≥  1 1 LLkk NNkk kk ++ 11

states that mainly guesses when to jump out of its start state when reading a states that mainly guesses when to jump out of its start state when reading a ..11

  
PropositionProposition: For all : For all , the set , the set  is a PD set of size  is a PD set of size  for  for     kk ≥≥ 11 SS   ==   00,, 11kk {{ }}kk 22kk LL ..kk
  
ProofProof: Clearly : Clearly .  Let any .  Let any , , , be given.  Since they are different binary, be given.  Since they are different binary  || 00,, 11 ||  ==  2 2{{ }}kk kk xx,, yy ∈∈ SSkk xx ≠≠ yy

strings, there must be a bit place strings, there must be a bit place  (numbering  (numbering ) in which they differ.  Without loss of generality, let) in which they differ.  Without loss of generality, let  ii 11…… kk

"" " refer to the string that has " refer to the string that has  in posiiton  in posiiton  and " and " " to the string with a " to the string with a  there.  Take  there.  Take , which, which  xx 00 ii yy 11 z z ==  0 0i-1i-1

is a legal string since is a legal string since .  Then .  Then  but  but , per the following picture:, per the following picture:ii ≥≥ 11 xzxz ∉∉ LLkk yzyz ∈∈ LLkk

  

  

aa

aa
aa

bb
bb

bb

aa

aa

bb

bb
11 22 33

44 55

bb
1414 2525

33

aa aa

bb

bb

aa

MM M'M'

States 2 and 3 are distinguished by States 2 and 3 are distinguished by  since 2 is rejecting and 3 is accepting.  Ditto 3 and 5. since 2 is rejecting and 3 is accepting.  Ditto 3 and 5.𝜖𝜖

States 2 and 5 are equivalent, however, because both are rejecting and both go to 5 on States 2 and 5 are equivalent, however, because both are rejecting and both go to 5 on aa
and to and to  on  on .  States .  States  and  and  are distinguished by  are distinguished by  because  because  goes to an accepting goes to an accepting33 bb 22 44 z z ==  b b 22

satte on satte on  but  but  does not.  Ditto states  does not.  Ditto states  and  and .  But states .  But states  and  and  are equivalent.  This is are equivalent.  This isbb 44 11 22 11 22

harder to see immediately, but is because they go to each other on harder to see immediately, but is because they go to each other on and go to equivalentand go to equivalenta a 

states on states on .  The unique minimum DFA .  The unique minimum DFA  such that  such that  is shown at right.   is shown at right.  bb M'M' LL M'M' == MM(( ))



  
Thus Thus , and since , and since  are arbitrary,  are arbitrary,  is PD for  is PD for .  Hence the minimum DFA .  Hence the minimum DFA   LL xzxz ≠≠ LL yzyzkk(( )) kk(( )) xx,, yy ∈∈ SSkk SSkk LLkk MMkk

such that such that  must have at least  must have at least  states (and in fact, can be designed with that many states, states (and in fact, can be designed with that many states,  LL MM == LL(( kk)) kk 22kk

e.g., since e.g., since  for any number  for any number , we can re-use the start state for , we can re-use the start state for , and so on).  , and so on).  𝜖𝜖   ==   00[[ ]] rr rr 𝛿𝛿 ss,, 00 == ss(( )) ☒☒
  
This finally proves there are cases of "exponential blowup" in the NFA-to-DFA construction.This finally proves there are cases of "exponential blowup" in the NFA-to-DFA construction.
  
  
The Class of Regular Languages: What It means to be RegularThe Class of Regular Languages: What It means to be Regular
  
Given a DFA Given a DFA , let us use the notation , let us use the notation the state the state  that  that  is in after is in after  M M ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) 𝛿𝛿 pp,, xx   ==   **(( )) qq MM

processing processing  from state  from state .  (We could have used .  (We could have used  for the DFA in the NFA-to-DFA proof.)  Note that for the DFA in the NFA-to-DFA proof.)  Note thatxx pp 𝛥𝛥
**

,,x x ∈∈  L  L ⟺⟺  𝛿 𝛿 ss,, xx   ∈∈  F F**(( ))

where where , so, soL L ==  L L MM(( ))

,,x x ∉∉  L  L ⟺⟺  𝛿 𝛿 ss,, xx   ∉∉  F F**(( ))

which is the same as writingwhich is the same as writing

x x ∈∈     ⟺⟺  𝛿 𝛿 ss,, xx   ∈∈   ..LL **(( )) FF

The upshot is that the DFA The upshot is that the DFA  gives  gives .  This trick of complementing.  This trick of complementing  M' M' ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF LL M'M'   ==   (( )) LL

accepting and nonaccepting states does not, however, work for a general NFA.  For example, if you tryaccepting and nonaccepting states does not, however, work for a general NFA.  For example, if you try  
this on the NFAs this on the NFAs  given for the languages  given for the languages  of binary strings whose  of binary strings whose th bit from the end is a 1, thenth bit from the end is a 1, then  NNkk LLkk kk
the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,  
not just those in the complement of not just those in the complement of .  [I spent some time showing this from the picture of .  [I spent some time showing this from the picture of  in the in the  LLkk NNkk

previous lecture.]  But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:previous lecture.]  But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:
  
Theorem 1Theorem 1: The complement of a regular language is always regular.  : The complement of a regular language is always regular.  ☒☒
  
Theorem 2Theorem 2: The class of regular languages is closed under all Boolean operations.: The class of regular languages is closed under all Boolean operations.
  
Actually, we already could have said this right after Theorem 1 about complements.  This is becauseActually, we already could have said this right after Theorem 1 about complements.  This is because  
OR is a native regular expression operation.  OR and negation (OR is a native regular expression operation.  OR and negation (  form a complete set of logic form a complete set of logic  ¬¬))

operations.  For instance, operations.  For instance,   by DeMorgan's laws.  by DeMorgan's laws.a a ANDAND b  b ≡≡   ¬¬(( ¬¬aa   OROR  ¬¬ b b(( )) (( ))))

  
What kind of machine or formal system can have a non-regular language?  Next week in Chapter 2 weWhat kind of machine or formal system can have a non-regular language?  Next week in Chapter 2 we  
will explore context-free grammars (CFGs).  Just for preview, the CFG will explore context-free grammars (CFGs).  Just for preview, the CFG  gives gives  G G ==   S   S  0S1  0S1 || 𝜖 𝜖→→

, and , and  generates all strings in the spears- generates all strings in the spears-LL GG   ==   00 11 ::  n n ≥≥ 00(( )) nn nn G'  G'  ==   S   S  𝜖  𝜖 || 0S  0S || $S  $S || $SDS $SDS→→

and-dragons game with unlimited spears in which the "Player" survives.and-dragons game with unlimited spears in which the "Player" survives.
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