
CSE396 Thursday, March 4: Myhill-Nerode Examples and ImplicationsCSE396 Thursday, March 4: Myhill-Nerode Examples and Implications

Picking up with a review of the "proof script" and the spears-and-dragons example---and recalling thatPicking up with a review of the "proof script" and the spears-and-dragons example---and recalling that
the logical statement we need to prove after making a good choice of the logical statement we need to prove after making a good choice of is: is:SS

for allfor all ((),), there existsthere exists such that such that ..xx,, yy ∈∈ SS x x ≠≠ y y z z ∈∈ 𝛴 𝛴** AA xzxz ≠≠ A A yzyz(()) (())

Example 4: Example 4: Suppose we "upgrade" the spears-and-dragons game to allow the Player to hold arbitrarilySuppose we "upgrade" the spears-and-dragons game to allow the Player to hold arbitrarily
many spears. The Player still loses a spear for each dragon killed. Recall the alphabet is many spears. The Player still loses a spear for each dragon killed. Recall the alphabet is
withwith

00,, $$,, DD{{ }}

 standing for empty room, standing for empty room, for spear, and for spear, and for dragon. We can prove that the resulting language for dragon. We can prove that the resulting language 00 $$ DD AA

is nonregular even without specifying exactly what is nonregular even without specifying exactly what is, and while ignoring the presence of is, and while ignoring the presence of .. AA 00

TakeTake _________ _________ ______________. "Clearly ______________. "Clearly is infinite." is infinite."S S == $$** SS

Let anyLet any (such that (such that)) be givenbe given. Then we can helpfully write . Then we can helpfully write ___ ___ ____ and ____ and xx,, yy ∈∈ SS xx ≠≠ yy x x == $$mm

____ ____ ______ where ____ ______ where ____ wlog.wlog.y y == $$nn m m << n n

TakeTake ____ ____ ______. Then ______. Then because _____ because _____ which is which is z z == DDnn AA xzxz ≠≠ A A yzyz(()) (()) xz xz == $$ DDmm nn

not in not in because because so the Player gets killed, but so the Player gets killed, but which is in which is in since the since the AA m m << n n yz yz == $$ DDnn nn AA
Player kills exactly the possible number of dragons and survives with zero spears left overPlayer kills exactly the possible number of dragons and survives with zero spears left over
______.______.

Since Since and and are an arbitrary pair from are an arbitrary pair from , , is PD for is PD for , and since , and since is infinite, is infinite, is nonregular by the is nonregular by the xx yy SS SS AA SS AA

Myhill-Nerode Theorem. Myhill-Nerode Theorem. ..☒☒

OK, we don't have to keep writing the proofs with fill-in-the-blank lines:OK, we don't have to keep writing the proofs with fill-in-the-blank lines:

Example 5Example 5: : is a balanced string of parentheses is a balanced string of parentheses ..BAL BAL == xx ∈∈ ,, :: x x{{ {{(())}}** }}

[Side example: If you have [Side example: If you have , then this is string is actually , then this is string is actually equivalent to equivalent to the empty stringthe empty string. If. If (((((()))))) ∼∼ BALBAL

you follow it by you follow it by then the whole thing then the whole thing is balanced just like is balanced just like is by itself. is by itself.(())(())(()) (((((())))))(())(())(()) (())(())(())

And if you have And if you have , then this is string is actually , then this is string is actually equivalent to the string " equivalent to the string " " If you follow it by" If you follow it by (((((((()))))) ∼∼ BALBAL ((

 then the whole thing then the whole thing has an excess of one has an excess of one just like just like is by itself.] is by itself.](())(())(()) (((((((())))))(())(())(()) (((((())(())(())

MNT proofMNT proof::
Take Take . Clearly . Clearly is infinite. Let any is infinite. Let any , , , be given. Then we can write , be given. Then we can write ,, S S == ((** SS xx,, yy ∈∈ SS xx ≠≠ yy x x == ((mm

 where where and and . Take . Take . Then . Then is in is in , but , but is is y y == ((nn mm,, n n ≥≥ 0 0 mm ≠≠ nn z z ==))mm xz xz == ((mm))mm BALBAL yz yz == ((nn))mm

not in not in since since makes it unbalanced, so makes it unbalanced, so . Since . Since are arbitrary, are arbitrary, BALBAL mm ≠≠ nn BALBAL xzxz ≠≠ BAL BAL yzyz(()) (()) xx,, yy ∈∈ SS

 is PD for is PD for , and since , and since is infinite, is infinite, is nonregular by MNT. is nonregular by MNT. ..SS BALBAL SS BALBAL ☒☒

Example 6Example 6: How about : How about can be closed to make a balanced string of can be closed to make a balanced string of BAL' BAL' == xx ∈∈ ,, :: x x{{ {{(())}}**

parenthesesparentheses ? This is the same as saying ? This is the same as saying . The above proof doesn't work. The above proof doesn't work }} ∃∃uu ∈∈ ,, xuxu ∈∈ BALBAL{{(())}}**

since we could have since we could have so that so that can be closed by appending can be closed by appending . But if. But if m m << n n yz yz == ((nn))mm u u ==))n-mn-m

 (which you can alternatively assert "wlog.") that wouldn't work. In fact, I prefer to keep (which you can alternatively assert "wlog.") that wouldn't work. In fact, I prefer to keep n n << m m m m << n n

to mimic alphabetical order and change the choice of to mimic alphabetical order and change the choice of in the proof instead. in the proof instead.zz

Take Take . Clearly . Clearly is infinite. Let any is infinite. Let any , , , be given. Then we can write , be given. Then we can write ,, S S == ((** SS xx,, yy ∈∈ SS xx ≠≠ yy x x == ((mm

 where where and wlog. and wlog. . Take . Take . Then . Then is not in is not in since the since the y y == ((nn mm,, nn ≥≥ 00 m m << nn z z ==))nn xz xz == ((mm))nn BAL'BAL'

excess of right parens cannot be fixed, but excess of right parens cannot be fixed, but is in is in , so , so . Since. Since yz yz == ((nn))nn BAL'BAL' BAL'BAL' xzxz ≠≠ BAL' BAL' yzyz(()) (())

 are arbitrary, are arbitrary, is an infinite PD set for is an infinite PD set for , so , so is nonregular by MNT. is nonregular by MNT. ..xx,, yy ∈∈ SS SS BAL'BAL' BAL'BAL' ☒☒

In fact, In fact, is really the same as the language of "spears and dragons with unlimited spears", reading is really the same as the language of "spears and dragons with unlimited spears", reading BAL'BAL'

'(' as a spear, ')' as a dragon, and ignoring empty rooms.'(' as a spear, ')' as a dragon, and ignoring empty rooms.

Example 7Example 7: To come back to an example in the text, try : To come back to an example in the text, try where where A A == wwww :: w w ∈∈ 𝛴 𝛴 :: ||ww|| is odd is odd**

again again . Over any alphabet of size . Over any alphabet of size or more, this language is often called DOUBLEWORD. or more, this language is often called DOUBLEWORD. 𝛴 𝛴 == 00,, 11{{ }} 22

When we cover the "CFL Pumping Lemma" in ch. 2 we will see that it is not even a "CFL" (whichWhen we cover the "CFL Pumping Lemma" in ch. 2 we will see that it is not even a "CFL" (which
includes all regular languages), but for now we'll just prove it's nonregular. We can essentially includes all regular languages), but for now we'll just prove it's nonregular. We can essentially plagiarizeplagiarize
 re-use the proof for the palindrome language (but by the way: re-use the proof for the palindrome language (but by the way: isis a CFL). a CFL). PALPAL

TakeTake _________ _________ ______________. "Clearly ______________. "Clearly is infinite." is infinite."S S == 00** SS

Let anyLet any (such that (such that)) be givenbe given. Then we can helpfully write . Then we can helpfully write ___ ___ ____ and ____ and xx,, yy ∈∈ SS xx ≠≠ yy x x == 00mm

____ ____ ______ where ____ ______ where ____ _____._____. y y == 00nn mm ≠≠ n n

TakeTake ____ ____ ______. Then ______. Then because _____ because _____ z z == 1100 11mm AA xzxz ≠≠ A A yzyz(()) (()) xz xz == 0 0 1100 11mm mm

which is in which is in , but , but which is not in which is not in since since and the only possible way toand the only possible way to AA yz yz == 0 0 1100 11nn mm AA mm ≠≠ nn

make a double word is to break after the first make a double word is to break after the first ..11

Since Since and and are an arbitrary pair from are an arbitrary pair from , , is PD for is PD for , and since , and since is infinite, is infinite, is nonregular by the is nonregular by the xx yy SS SS AA SS AA

Myhill-Nerode Theorem. Myhill-Nerode Theorem. ..☒☒

While cutting the mouse-copied fill-in-the-blank format, we can make the proof a little more elegant byWhile cutting the mouse-copied fill-in-the-blank format, we can make the proof a little more elegant by
defining defining slightly differently: slightly differently:SS

Take Take . Clearly . Clearly is infinite. Let any is infinite. Let any (() be given. Then we can write) be given. Then we can write S S == 0000 11(())** SS xx,, yy ∈∈ SS xx ≠≠ yy

and and where where . Take . Take . . Then Then because because x x == 0000 1 1 (())mm y y == 0000 11(())nn mm ≠≠ nn z z == 0000 11(())mm AA xzxz ≠≠ A A yzyz(()) (())

 and and which is always odd, but which is always odd, but xz xz == 0000 11 0000 1 1 ∈∈ A A(())mm (())mm || 0000 11|| == 2m 2m ++ 11(())mm

 since since and the only possible way to make a double word is to break and the only possible way to make a double word is to break yz yz == 0000 11 0000 1 1 ∉∉ A A(())nn (())mm m m ≠≠ n n

after the first after the first . Since . Since are arbitrary, are arbitrary, is PD for is PD for , and since , and since is infinite, is infinite, by the by the 11 xx,, y y ∈∈ S S SS AA SS A A ∉∉ REGREG

Myhill-Nerode Theorem. Myhill-Nerode Theorem. ☒☒

What on earth is What on earth is ? The curly font means it is a set of languages, which we call a ? The curly font means it is a set of languages, which we call a classclass. So . So REGREG REGREG

stands for the class of regular languages. Beware: the languagestands for the class of regular languages. Beware: the language

 isis in in ..A'' A'' == xx ⋅⋅ yy :: #0 #0 xx == #1 #1 yy{{ (()) (())}} REGREG

One help is to rewrite sets so they have only one named object to the left of the : (or |)One help is to rewrite sets so they have only one named object to the left of the : (or |)
A'' A'' == ww :: w can be broken as w w can be broken as w =:=: xy such that #0 xy such that #0 xx == #1 #1 yy{{ (()) (())}}

Similarly, you can avoid confusing Similarly, you can avoid confusing with with by remembering the definition of by remembering the definition ofAA22 xxxx :: x x ∈∈ A A{{ }}

. So. SoAA ⋅⋅B B == ww :: w can be broken as w w can be broken as w =:=: x x ⋅⋅ y with x y with x ∈∈ A and y A and y ∈∈ B B{{ }}

..AA == ww :: w can be broken as w w can be broken as w =:=: x x ⋅⋅ y with x y with x ∈∈ A and y A and y ∈∈ A A22 {{ }}

Example 8Example 8: : What about DOUBLEWORD over a single-letter alphabet, say What about DOUBLEWORD over a single-letter alphabet, say ? It is still defined? It is still defined 𝛴 𝛴 == aa{{ }}

via via . Let's try the same kind of strategy:. Let's try the same kind of strategy:A A == wwww :: w w ∈∈ 𝛴 𝛴**

""PoofPoof": Take ": Take . Clearlty . Clearlty is infinite. Let any is infinite. Let any (() be given. Then we can write) be given. Then we can write S S == a a** SS xx,, yy ∈∈ SS xx ≠≠ yy

and and where where . Take . Take . . Then Then which is clearly a double-word, which is clearly a double-word, x x == aa mm y y == a ann mm ≠≠ nn z z == a amm xz xz == a a aamm mm

but but which is not since which is not since . So . So , so , so is PD for is PD for , and since , and since is is yz yz == a a aann mm n n ≠≠ m m AA xzxz ≠≠ A A yzyz(()) (()) SS AA SS

infinite, infinite, by the Myhill-Nerode Theorem. by the Myhill-Nerode Theorem. A A ∉∉ REGREG ☒☒

But wait: a string over But wait: a string over is a double-word if and only if it is an even number of is a double-word if and only if it is an even number of 's, so it matches 's, so it matches ,, aa{{ }} aa aaaa(())**

so so is regular after all. What is wrong with the proof? Note that is regular after all. What is wrong with the proof? Note that , , is a possible pair is a possible pair AA m m == 3 3 n n == 5 5

from from , that is, , that is, , , which makes which makes . Clearly . Clearly is a double-word, but it is a double-word, but it SS x x == a a33 y y == a a55 z z == a a33 xz xz == a a aa33 33

looks like looks like isn't. At least that's the isn't. At least that's the intentintent of writing of writing , and (here comes a jargon word) the, and (here comes a jargon word) the yz yz == a a aa55 33 aa aa55 33

intensionintension by which we may read it. But the by which we may read it. But the extensionextension is that is that is the string of eight is the string of eight 's, which's, which aa aa55 33 aa

without the power abbreviations is without the power abbreviations is . This can be broken a different way as . This can be broken a different way as , whose, whose aaaaaaaaaaaaaaaa aaaaaaaa ⋅⋅ aaaaaaaa

intension is intension is . Thus the string . Thus the string is a double-word after all, so the conclusions is a double-word after all, so the conclusions and thus and thus aa ⋅⋅ aa44 44 aa aa55 33 yzyz ∉∉ AA

 were wrong. Poof! were wrong. Poof! AA xzxz ≠≠ A A yzyz(()) (())

And since the language And since the language is regular after all the proof can't be fixed. Another common mistake is to is regular after all the proof can't be fixed. Another common mistake is to AA

"fudge" by restricing pairs from "fudge" by restricing pairs from in ways that in ways that do lose generalitydo lose generality. For instance, if you asserted "Then. For instance, if you asserted "Then SS

we can write we can write and and where one of where one of and and is even and the other is odd," then the is even and the other is odd," then the x x == aa mm y y == a ann mm nn

conclusions conclusions and and giving giving would work---but you wouldn't have would work---but you wouldn't have xzxz ∈∈ AA yzyz ∉∉ AA AA xzxz ≠≠ A A yzyz(()) (())

represented all the possibilities in the represented all the possibilities in the requirement fairly. requirement fairly.∀∀xx,, yy ∈∈ SS,, x x ≠≠ yy(())

Does that mean all languages over a single-letter alphabet are regular? Our last lecture exampleDoes that mean all languages over a single-letter alphabet are regular? Our last lecture example
shows not. The "wlog. shows not. The "wlog. " part isn't strictly necessary, but it is convenient." part isn't strictly necessary, but it is convenient.mm << nn

Example 9Example 9: Define : Define , which equals , which equals ..A A == aa :: N is a N is a perfectperfect square squareNN aa :: n n ∈∈ NNnn 22

Take Take . Clearlty . Clearlty is infinite. Let any is infinite. Let any (() be given. Then we can write) be given. Then we can write andand S S == a a** SS xx,, yy ∈∈ SS xx ≠≠ yy x x == aa mm

 where wlog. where wlog. . Put . Put . The key numerical fact about perfect squares is that. The key numerical fact about perfect squares is that y y == a ann m m << n n k k == n n --mm

the gaps between successive squares grow bigger and bigger. So we can find the gaps between successive squares grow bigger and bigger. So we can find such that such that rr

, and for good measure, such that , and for good measure, such that . Take . Take . Then. Then rr ++ 11 -- r r >> k k(())22 22 rr >> m m22 z z == a arr -m-m22

, which belongs to , which belongs to . But. Butxz xz == a a aa == a amm rr -m-m22 rr22

AA

 ,, yz yz == a a aa == a a aa == a ann rr -m-m22 k+mk+m rr -m-m22 rr +k+k22

which is not long enough to get up to which is not long enough to get up to , which is the next member of , which is the next member of . So . So , giving, giving aa r+1r+1(())22

AA yz yz ∉∉ A A

 legitimately this time. So legitimately this time. So is PD for is PD for , and since , and since is infinite, is infinite, by the by the AA xzxz ≠≠ A A yzyz(()) (()) SS AA SS A A ∉∉ REGREG

Myhill-Nerode Theorem. Myhill-Nerode Theorem. ☒☒

By the way, one can state the MNT as "if By the way, one can state the MNT as "if has an infinite PD set has an infinite PD set then then is not regular." This is, is not regular." This is, AA SS AA

however, "Has-A" in the OOP sense, not in the sense of however, "Has-A" in the OOP sense, not in the sense of being a subset of being a subset of . In example 9, . In example 9, is is SS AA SS

actually a actually a supersetsuperset of of .. AA

Consequences of MNT for Languages that Consequences of MNT for Languages that AreAre Regular and Their DFAs Regular and Their DFAs

The full Myhill-Nerode Theorem---including the converse direction---says that every regular language The full Myhill-Nerode Theorem---including the converse direction---says that every regular language AA

has a DFA has a DFA whose states are the equivalence classes of the relation whose states are the equivalence classes of the relation . No DFA can have any. No DFA can have any MMAA ∼∼ AA

fewer states than the number fewer states than the number of those classes---that follows from the original forward direction. of those classes---that follows from the original forward direction. kk

Moreover, the components of Moreover, the components of are all completely dictated by the relation. Let us write are all completely dictated by the relation. Let us write to denote to denote MMAA xx[[]]

the equivalence class of a string the equivalence class of a string (with the language (with the language understood); note that when understood); note that when we have we have xx AA x x ∼∼ y yAA

 even though even though . Then we have . Then we have as the start state of as the start state of and and xx == yy[[]] [[]] x x ≠≠ y y ss == 𝜖𝜖AA [[]] MMAA

 for the final states. The part I didn't say before is the rule for the final states. The part I didn't say before is the ruleFF == xx :: x x ∈∈ AAAA {{[[]] }}

,,𝛿𝛿 xx ,, cc == xcxcAA(([[]])) [[]]

which is valid because using which is valid because using in place of in place of when when doesn't change the value, because then doesn't change the value, because then yy xx yy == xx[[]] [[]]

 anyway, since anyway, since implies implies for any char for any char . Anyway, the point is that . Anyway, the point is that too too ycyc == xcxc[[]] [[]] x x ∼∼ y yAA xc xc ∼∼ yc ycAA cc 𝛿𝛿AA

is completely dictated. The upshot is the following statement:is completely dictated. The upshot is the following statement:

CorollaryCorollary (to the MNT): Every regular language (to the MNT): Every regular language has a minimum-size DFA has a minimum-size DFA that is unique. that is unique.AA MMAA

Unfortunately, the MNT does not do much to help you build an efficient Unfortunately, the MNT does not do much to help you build an efficient algorithmalgorithm to to findfind . The one. The one MMAA

thing we do know is that once you thing we do know is that once you havehave a DFA a DFA such that such that , no matter, no matter MM == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) LL MM == A A(())

how wasteful, you can always efficiently how wasteful, you can always efficiently refinerefine it down to the unique optimal it down to the unique optimal . The key definition. The key definition MMAA

uses the auxiliary notation uses the auxiliary notation to mean the state that to mean the state that (being a DFA) uniquely ends at upon (being a DFA) uniquely ends at upon 𝛿𝛿 qq,, zz**(()) MM

processing the string processing the string from state from state . Inductively, . Inductively, for any for any , and further for any string , and further for any string zz qq 𝛿𝛿 qq,, 𝜖𝜖 == q q**(()) qq ww

and char and char , , .. cc 𝛿𝛿 qq,, wcwc == 𝛿 𝛿 𝛿𝛿 qq,, ww ,, cc**(()) **(())

DefinitionDefinition: Two : Two statesstates and and in a DFA in a DFA are are distinguishabledistinguishable if there exists a string if there exists a string such that one such that one pp qq M M zz

of of and and belongs to belongs to and the other does not. Otherwise they are and the other does not. Otherwise they are equivalentequivalent..𝛿𝛿 pp,, zz **(()) 𝛿𝛿 qq,, zz**(()) FF

Two equivalent states must either be both accepting or both rejecting, because if they are one of eachTwo equivalent states must either be both accepting or both rejecting, because if they are one of each
then they are immediately distinguished by the case then they are immediately distinguished by the case . There is a simple sufficient condition: If . There is a simple sufficient condition: If z z == 𝜖 𝜖 pp

and and are bopth accepting or both rejecting, and if they go to the same states on the same chars (that are bopth accepting or both rejecting, and if they go to the same states on the same chars (that qq

is, if is, if for all for all), then they are equivalent. But otherwise, it can be hard to tell), then they are equivalent. But otherwise, it can be hard to tell 𝛿𝛿 pp,, cc == 𝛿 𝛿 qq,, cc(()) (()) cc ∈∈ 𝛴𝛴

equivalence. There is an algorithm for determining this that is covered in some texts, and also appearsequivalence. There is an algorithm for determining this that is covered in some texts, and also appears
in some Algorithms texts as an example of "dynamic programming."in some Algorithms texts as an example of "dynamic programming."

We will focus on the distinguishing side instead. The following are good self-study points about anyWe will focus on the distinguishing side instead. The following are good self-study points about any
DFA DFA with language with language ::MM A A == L L MM(())

• • If If (in words, if (in words, if and and are distinctive for the language are distinctive for the language) then in any DFA) then in any DFA such that such that x x ≁≁ y yAA xx yy AA MM

, , and and must be distinguishable states---not just different states. must be distinguishable states---not just different states.LL MM == AA(()) 𝛿𝛿 ss,, xx**(()) 𝛿𝛿 ss,, yy**(())

• • If If , then , then and and must be equivalent states must be equivalent states..x x ∼∼ y yAA 𝛿𝛿 ss,, xx**(()) 𝛿𝛿 ss,, yy**(())

• • If If and and are distinguishable states, then are distinguishable states, then ..𝛿𝛿 ss,, xx**(()) 𝛿𝛿 ss,, yy**(()) x x ≁≁ y yAA

• • If If is a PD set for is a PD set for , then the strings in , then the strings in must all get processed to different states from must all get processed to different states from ..SS AA SS ss

The last point leads us to consider PD sets in cases where languages The last point leads us to consider PD sets in cases where languages areare regular. Let us revisit the regular. Let us revisit the
languages languages for all for all . Recall that . Recall that always has an NFA always has an NFA of of LL == 00 ++ 11 11 00 ++ 11kk (())** (())k-1k-1 k k ≥≥ 1 1 LLkk NNkk kk ++ 11

states that mainly guesses when to jump out of its start state when reading a states that mainly guesses when to jump out of its start state when reading a ..11

PropositionProposition: For all : For all , the set , the set is a PD set of size is a PD set of size for for kk ≥≥ 11 SS == 00,, 11kk {{ }}kk 22kk LL ..kk

ProofProof: Clearly : Clearly . Let any . Let any , , , be given. Since they are different binary, be given. Since they are different binary || 00,, 11 || == 2 2{{ }}kk kk xx,, yy ∈∈ SSkk xx ≠≠ yy

strings, there must be a bit place strings, there must be a bit place (numbering (numbering) in which they differ. Without loss of generality, let) in which they differ. Without loss of generality, let ii 11…… kk

"" " refer to the string that has " refer to the string that has in posiiton in posiiton and " and " " to the string with a " to the string with a there. Take there. Take , which, which xx 00 ii yy 11 z z == 0 0i-1i-1

is a legal string since is a legal string since . Then . Then but but , per the following picture:, per the following picture:ii ≥≥ 11 xzxz ∉∉ LLkk yzyz ∈∈ LLkk

aa

aa
aa

bb
bb

bb

aa

aa

bb

bb
11 22 33

44 55

bb
1414 2525

33

aa aa

bb

bb

aa

MM M'M'

States 2 and 3 are distinguished by States 2 and 3 are distinguished by since 2 is rejecting and 3 is accepting. Ditto 3 and 5. since 2 is rejecting and 3 is accepting. Ditto 3 and 5.𝜖𝜖

States 2 and 5 are equivalent, however, because both are rejecting and both go to 5 on States 2 and 5 are equivalent, however, because both are rejecting and both go to 5 on aa
and to and to on on . States . States and and are distinguished by are distinguished by because because goes to an accepting goes to an accepting33 bb 22 44 z z == b b 22

satte on satte on but but does not. Ditto states does not. Ditto states and and . But states . But states and and are equivalent. This is are equivalent. This isbb 44 11 22 11 22

harder to see immediately, but is because they go to each other on harder to see immediately, but is because they go to each other on and go to equivalentand go to equivalenta a

states on states on . The unique minimum DFA . The unique minimum DFA such that such that is shown at right. is shown at right. bb M'M' LL M'M' == MM(())

Thus Thus , and since , and since are arbitrary, are arbitrary, is PD for is PD for . Hence the minimum DFA . Hence the minimum DFA LL xzxz ≠≠ LL yzyzkk(()) kk(()) xx,, yy ∈∈ SSkk SSkk LLkk MMkk

such that such that must have at least must have at least states (and in fact, can be designed with that many states, states (and in fact, can be designed with that many states, LL MM == LL((kk)) kk 22kk

e.g., since e.g., since for any number for any number , we can re-use the start state for , we can re-use the start state for , and so on). , and so on). 𝜖𝜖 == 00[[]] rr rr 𝛿𝛿 ss,, 00 == ss(()) ☒☒

This finally proves there are cases of "exponential blowup" in the NFA-to-DFA construction.This finally proves there are cases of "exponential blowup" in the NFA-to-DFA construction.

The Class of Regular Languages: What It means to be RegularThe Class of Regular Languages: What It means to be Regular

Given a DFA Given a DFA , let us use the notation , let us use the notation the state the state that that is in after is in after M M == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) 𝛿𝛿 pp,, xx == **(()) qq MM

processing processing from state from state . (We could have used . (We could have used for the DFA in the NFA-to-DFA proof.) Note that for the DFA in the NFA-to-DFA proof.) Note thatxx pp 𝛥𝛥
**

,,x x ∈∈ L L ⟺⟺ 𝛿 𝛿 ss,, xx ∈∈ F F**(())

where where , so, soL L == L L MM(())

,,x x ∉∉ L L ⟺⟺ 𝛿 𝛿 ss,, xx ∉∉ F F**(())

which is the same as writingwhich is the same as writing

x x ∈∈ ⟺⟺ 𝛿 𝛿 ss,, xx ∈∈ ..LL **(()) FF

The upshot is that the DFA The upshot is that the DFA gives gives . This trick of complementing. This trick of complementing M' M' == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF LL M'M' == (()) LL

accepting and nonaccepting states does not, however, work for a general NFA. For example, if you tryaccepting and nonaccepting states does not, however, work for a general NFA. For example, if you try
this on the NFAs this on the NFAs given for the languages given for the languages of binary strings whose of binary strings whose th bit from the end is a 1, thenth bit from the end is a 1, then NNkk LLkk kk
the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,
not just those in the complement of not just those in the complement of . [I spent some time showing this from the picture of . [I spent some time showing this from the picture of in the in the LLkk NNkk

previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:

Theorem 1Theorem 1: The complement of a regular language is always regular. : The complement of a regular language is always regular. ☒☒

Theorem 2Theorem 2: The class of regular languages is closed under all Boolean operations.: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is becauseActually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (OR is a native regular expression operation. OR and negation (form a complete set of logic form a complete set of logic ¬¬))

operations. For instance, operations. For instance, by DeMorgan's laws. by DeMorgan's laws.a a ANDAND b b ≡≡ ¬¬((¬¬aa OROR ¬¬ b b(()) (())))

What kind of machine or formal system can have a non-regular language? Next week in Chapter 2 weWhat kind of machine or formal system can have a non-regular language? Next week in Chapter 2 we
will explore context-free grammars (CFGs). Just for preview, the CFG will explore context-free grammars (CFGs). Just for preview, the CFG gives gives G G == S S 0S1 0S1 || 𝜖 𝜖→→

, and , and generates all strings in the spears- generates all strings in the spears-LL GG == 00 11 :: n n ≥≥ 00(()) nn nn G' G' == S S 𝜖 𝜖 || 0S 0S || $S $S || $SDS $SDS→→

and-dragons game with unlimited spears in which the "Player" survives.and-dragons game with unlimited spears in which the "Player" survives.

xx
yy

1 2 3 1 2 3 i i -- 1 i 1 i k k
00
11

0 0 0 0 0 0 00 0 0 0 0 0 0
0 0 0 0 0 0 00 0 0 0 0 0 0

kk

kk ++ 11 kk ++ ii -- 11

