Let \(L = \{ a^i b^i : i \geq 0 \} \). Suppose we try to prove \(L \) is not regular. Let \(s \) be in \(L \).

Take \(S = a^n \) clearly infinite. Let any \(x, y \in S \), \(x \neq y \) be given. Then we can write \(x = a^m, y = a^n \) where \(n = m + 1 \). Take \(z = b b \). Then \(x z = a^m b^2 \) and \(y z = a^n b^2 \). Then \(m + 2 \) is even \(\Rightarrow n + 2 \) is odd since \(n = m + 1 \), so \(L(xz) \neq L(yz) \). So \(S \) is PD for \(L \), \(\ldots \) etc.

ERROR: \((xz)\) is not a general choice or \(y \) did not come from \(S \).

Try \#2: Take \(S = (aa)^* \). Also clearly infinite.

Let any \(x, y \in S \), \(x \neq y \), be given. Then \(x = a^m, y = a^n \) where \(m \) and \(n \) are both even and \(n \neq m \). Take \(z = ____ 22 \). Not possible to get

In fact, all strings in \(S \) are equivalent w.r.t. to \(L \). We did get some information from the first try: \(a^{m+1} \neq a^m \) for all \(m \).

Let's put \(\varepsilon \) and \(a \) into our \(S \) representing the "\(m \) even" and "\(m \) odd" cases. Any more? Consider \(x^i = b \). Now \(b \in L \) and \(e \in L \) so \(b \neq e \), but is \(b \neq a \)? \(L = \{ a^i b^i : i \geq 0 \} \). \(\varepsilon \) is even 3, so \(ba \neq L \) while \(ad \in L \). So \(b \neq a \) via \(z = a \).

Now \(S = \{ \varepsilon, a, b, ba, ab \} \).

Is that all? Ah, \(ba \) must go to a dead state distinct from the others since none of \(\varepsilon, a, b \) is dead w.r.t. \(L \).

Since we did feel that \(L \) is regular, we can use \(S \) to help design a DFA. All strings in \(S \) must go to different states. Now we have 4 states. Do we need any more? Is \(aa \sim \varepsilon \)? Yes, so \(S(aa, a) = 5 \) is fine.

What about \(ab \)? It is in \(L \). But \(ab \neq \varepsilon \) by \(z = a \). And \(ab \) is distinctive from all the other elements of \(S \) which are in \(L \). Is \(ba \neq \varepsilon \)?
Every Statement of MNT: A language L is regular if and only if all PD sets for L are finite. When so, then there is a maximum size m of a PD set, and m is the minimum size of a DFA M s.t. L(M) = L, and that M is unique of that size. Proof not given.

Def.: A state q is equivalent to itself. (in a DFA M)

* Two states p and q are equivalent if they are both accepting or both rejecting, and for all c ∈ Σ, the states p' = S(p, c) and q' = S(q, c) are equivalent. (That is the basis for an algorithm for minimizing DFAs, but it is not on our syllabus.)

More MNT Examples: $L_{bd} = \{ x \in \{ 0, 1 \}^* : x \text{ is a survivable dungeon when you may hold any # of spears}, \}$

Prove that L_{bd} is not regular: Take $S = \{ * \}$. Clearly S is infinite. Let any $x \in S$, $x \neq y$ be given. Then there are $m, n \geq 0$ such that $x = y^m$, $y = y^n$, and wlog $m < n$. Take $z = d^n$. Then $z^2 = y^{2n} \notin L_{bd}$ because $m < n$, so the player gets killed by the $n+1$st dragon. But $yz = y^{2n} \in L_{bd}$.

Thus L_{bd} is not regular. Take $x \neq y$ be given. Because $x \neq y$, there is a bit place i s.t. $x_i \neq y_i$. Then $x^i \in L_{bd}$ and $y^i \notin L_{bd}$, so that many states are needed. Thus, $S = \{ 0, 1 \}^*$ is a PD set for L_{bd} of size S, so that many states are needed. Notice from 0.

Claim: $S = \{ 0, 1 \}^*$ is a PD set for L_{bd} of size S, so that many states are needed. Let any $x \in S$, $x \neq y$ be given. Because $x \neq y$, there is a bit place i s.t. $x_i \neq y_i$. Take $z = 0^i$. Suppose "x" is the string such that $x_i = 1$, $y_i = 0$. Then y^i has a 1 in i

Abstract Example: Define $L_K = \{ x \in \{ 0, 1 \}^* : |x| \leq K \}$ and the K-th bit from right is 0.

NFA for L_K has $K+1$ states. How many states does a DFA M need? $N = 2^K$ states

Claim: $S = \{ 0, 1 \}^*$ is a PD set for L_K, of size S^K, so that many states are needed. Let any $x \in S$, $x \neq y$ be given. Because $x \neq y$, there is a bit place i s.t. $x_i \neq y_i$. Take $z = 0^i$. Suppose "x" is the string such that $x_i = 1$, $y_i = 0$. Then y^i has a 1 in i

Please let me know if there's anything else I can assist you with!