
CSE396 Lecture Tue. 3/23: Structural Induction and Context-Free Grammars
 
The natural numbers  can be "defined" via the context-free grammar N

 
S  0  |  S+ 1→

 
where the  is a terminal symbol---you can do the addition later.  [Just FYI, if you literally want to derive +

numbers in tally notation, you can use a similar "list-of" pattern in a linearly-extending fashion:
 

 S → BS  |  F      

1111    B   →

1111  |  F   → 1111  |  111  |  11  |  1  |   

 
Note: cave people did not have zero.  No, I am not about to show another Geico commercial.] [I diddled 
with the garmmar and showed how if you combine the rules for  and  into one variable (or make B F

 an option) then you allow strings like 1111  1111   1111  which you might not regard B  F→ 111 11 1

as internally-sound tally strings.  Whereas, the rules as-given uphold that only the inal block can be a F

"short tally" less than 5.]
 
When you do the "  to " or "  to " style of induction as taught in CSE191, you can picture it n - 1 n n n+ 1

as working "on" the first grammar above.  You get a linearly extending pattern.  The advantage of 
Structural Induction (SI) is that you can have tree-branching patterns, and more---all based on a 
context-free grammar, and without the "crutch" of using natural numbers.
 
There is an imperfect analogy to object-oriented programming that I try to promote.  If you derive
 

<class> → <subclass> → <subclass of that> → <subclass of that>...

 
it's like induction on .  But you can make a branching hierarchy of classes.  The factory design N

patterns usually provide branching on-the-fly generation of objects.  The mode of thinking that aligns 
with SI is to consider which properties of the base class are preserved by these generations, and which 
further properties are propagated.  
 
We have seen a proof by SI already in this course, when I proved that every regular expression  can r

be converted into an NFA  such that .  That proof did not mention a "natural number " Nr L r  = L N( ) ( r) n

but worked directly on the structure of , technically according to a grammar such as:r

 
. R ::=  ∅  |  𝜖  |  a  |  b  |  R+R   |  R ⋅R   |  R( ) ( ) *

 
(Or: the grammar on the HW, but ignoring the rule  since it adds no structure.)   A proof by SI R ::=  R( )

always works from a grammar to a target property  that holds for every object that the grammar  P G

can generate.  It proves: Every object generated "syntactically" via  has the "semantic" property .  If G P

the latter is your "ground truth" then this means proving that the grammar generates no false positives. 

 

 



 
Definition:  Let  be any target language, such as  for all true positives of .T TP P

• The grammar  is sound if .  That is,  avoids false positives.G L G  ⊆  T( ) G

•  is comprehensive if .G L G  ⊇  T( )

 
Structural induction is a technique for proving soundness.  Sometimes you can see 
comprehensiveness, but not always.  In the case of every regular expression having an equivalent 
NFA, it took a whole separate proof to do the converse---to show that every NFA (or DFA or GNFA) has 
an equivalent regular expression.  We will emphasize SI soundness proofs but "soft-pedal" the harder 
comprehensiveness proofs, which go from parsing strings to building derivations in the grammar.
 
I like to personify each variable of a grammar---this is a "poetic trope" but accords with human thinking 
while designing stuff.  Here is the "proof script'' in general given a grammar

 and target language :G = (V,𝛴,R, S) T

 
1. Assign to each variable  a property  of strings it can derive.  You can think of  as the A PA PA

"meaning" you give to ---though it need not be a comprehensive meaning, just enough to work A

with the other variables.  You can personify it in the form,
 

" : Every  that I derive is such that..."PA x

 
2. The meaning  of the start symbol should imply .  Often you can simply take  to be the PS x ∈ T PS

assertion, "Every  that I derive belongs to ," but sometimes you need to use a sharper x T

property.  [Technically this is called "strengthing" or "loading" the induction hypothesis (IH), but 
what I call "SI style" tries to make it more transparent.]
 

3. For each variable  and each rule  where , begin the body of the script by A A X→ X ∈ (𝛴∪V)*

writing, "Suppose  using this rule first" (you can abbreviate the last four words to "utrf'' A ⟹  x*

or to "utpf'' for "using this production first").
 

4. If the rule's whole right-hand side  is an all-terminal string, you immediately need to check that X

 obeys what  says.  This is a base case.X PA

 
5. Otherwise,  has one or more occurrences of variables.  Note that the variable  itself can X A

occur on the right-hand side of the rule.  This may seem like circular logic but it's not.  It or some 
other variable(s) can occur more than once.  Regardless, for each occurrence---call it ---let  Bi  ui

(or any letter you like) stand for a corresponding terminal substring that it derives.  You have to 
be general and you have to include any terminals in the rule in the right order.  If there are  k
occurrences of variables on the right-hand side (RHS) of the rule , then the script says to A X→

enuncuiate it by saying: 
 

"Then  where  and ... and  and ... x=: … u … u … u …1 i k B ⟹  u1
*

1 B  ⟹  ui
*

i

."B ⟹  uk
*

k

 

 



 
6. Now we apply the corresponding properties  of the variables on the RHS.  P , … ,P , … ,PB1 Bi Bk

Again, two of those occurrences may be the same variable, so you will use the same property 
twice, but you will generally be using the property on different substrings.  Here is the scripted 
way to enunciate this: 
 
"By IH  on RHS, the substring  satisfies..., and by IH  on RHS,  satisfies ...''  PB1

u1 PB2
u2

 
And so on through all the substrings.
 

7. Finally, you need to argue that the fact of each substring obeying its property ensures that the 
resulting string  (whatever it is---it is general) obeys the original property  of the variable  x PA A

on the left-hand side (LHS) of the rule. You can then summarize by saying, "This upholds  on PA

LHS."
 

8. When you show that every rule upholds the stated property of its left-hand variable, then you 
uphold  in particular, which is what entitles you to conclude "  by structural induction."PS L(G) ⊆ T

 
[cover examples from handout and previous-year notes:
https://cse.buffalo.edu/~regan/cse396/CSE396SI.pdf
https://cse.buffalo.edu/~regan/cse396/CSE396lect040518.pdf
https://cse.buffalo.edu/~regan/cse396/CSE396lect032416.pdf
as time permits, using the last as a parsing analogy for properties of programming syntax.

 

 

 

https://cse.buffalo.edu/~regan/cse396/CSE396SI.pdf
https://cse.buffalo.edu/~regan/cse396/CSE396lect040518.pdf
https://cse.buffalo.edu/~regan/cse396/CSE396lect032416.pdf

