Suppose \(G \) is a context-free grammar that is trying to meet some external specification \(E \subseteq \Sigma^* \).

- \(G \) is **sound** for \(E \) if \(L(G) \subseteq E \).
- \(G \) is **comprehensive** for \(E \) if \(L(G) \supseteq E \).

(logical term is "complete")

- \(G \) is **correct** if \(L(G) = E \), i.e., \(G \) is both sound and comprehensive.

Example: \(\Sigma = \{ (,) \} \), \(E = \) the language of nonempty balanced parentheses strings.

\[G = S \rightarrow (S)S \mid () \]

"Structural Induction" (SI) for CFGs.

Is \(G \) sound? A particular technique for seeing this kind of thing.

Method

- Assign to each variable \(A \) a property \(P_A \). \(P_S \equiv \) "Every string that I derive is balanced and nonempty?"

Proof Script

- \(P_S \) should imply membership in \(E \).
- Go through each rule \(A \rightarrow X \) and show that if every variable \(B \) on the L.H.S. derives a string \(u \) (or \(v \)) that obeys \(P_B \) then the whole resulting string obeys \(P_A \). Then we can deduce production (\(\sigma \)) for \(L(G) \subseteq E \) by SI.

\[S \rightarrow () : \]

Suppose \(S \Rightarrow \alpha X \) using this rule first (\(\sigma \)). Then \(X = () \) which is balanced and nonempty. This **upholds** \(P_S \) on the L.H.S.

\[S \rightarrow (S)S : \]

Suppose \(S \Rightarrow \alpha X \) \(\sigma \). Then \(X = (y)Z \) where \(S \Rightarrow \alpha y \) and \(S \Rightarrow \beta Z \). By IH \(P_S \) on the R.H.S. (twice), \(y \) and \(Z \) are both balanced and \(\neq \).

Then \(X = (y)Z \) is balanced because the 'i' shan makes the 'c'

\[L() \Rightarrow () \]

yields and \(y \) and \(Z \) are individually balanced. And \(X \neq \) clearly. \(\Rightarrow P_S \) on LHS since we uphold all rules, \(L(\gamma) \subseteq E \) by SI.
Is G comprehensive? [S \rightarrow (S)(S)] No. G cannot derive $x = (x)$.

One should not try to use S to prove comprehensiveness, but can use S to disprove it.

In fact, S obeys the stronger property $P_s' = \forall x \exists y : x \in E' \land (x = y \lor y \in E')$.

By Th P_s on RHS, x is also nonempty as well as balanced. Hence $x = (y)z$ has nesting. Thus we get $L(\alpha) \subseteq E' \cup \{''(\alpha)''\}$.

where $E' = \{\text{balanced } x : x = (x) \lor x \text{ has nesting (hence } x \notin E \text{ either way)}\}$.

Since clearly "(C)" $\notin E'$, $E \supset E$, so $L(\alpha) \notin E$. Hence G is not correct either.

Exercise: Show that G cannot derive "(C)" (this "fully-nested" string) either. This leads to the question: Can we expand G, keeping it sound, by adding rules so it becomes comprehensive? Try adding:

$S \rightarrow (S)S$ Clearly sound but does not help us derive x.

$S \rightarrow (S)(S)$ Also sound, helps give x but not $\exists x$. Generally, adding both rules makes the resulting G' comprehensive, hard to prove.

Second example of soundness: $E = \{x \in \{a,b\}^*: \#a(x) = A \land bx(x)\}$.

$G_2: S \rightarrow SS | aB | bA | S | aS | bAA | bS | aBB | bB | aS | bS | aB | bB \theta$

P_θ: Every $x \in E$ is in E.

$P_A = \exists y \forall x : a = y$ has 1 more.

$P_B = \exists x \forall y : B \neq x$ has 1 more by thumb.

Proof of soundness will be included Thursday and comprehensiveness sketched.

As for why $G' = S \rightarrow (S)(S) | (S)(S)(S)(S)$ is comprehensive for E, we will get that as a consequence of the Church-Ng conversion for $G_0 = S \rightarrow (S)(S) \in E$.

\equiv