Defn: A language L is a Context-Free Language (CFL) if there is a Context-Free Grammar (CFG) G s.t. $L = L(G)$.

Lemma: If L is a CFL, then:

1. There exists a number $N > 0$ such that for all $x \in L$ with $|x| \geq N$:
2. There exists a breakdown $x = y u v w z$ such that $|u v w| \leq N$, u and w are not both ε, and:
3. For all $i \geq 0$, $x^{(i)} = y u^i v w z$ belongs to L.

Note: $x^{(0)} = y v z$

Proof: Since L is a CFL, there is a grammar G in Chomsky Normal Form such that $L(G) = L \setminus \varepsilon$. We have $G = (V, \Sigma, R, S)$. Take $k = |V|$, $N = 2^k$.

Let any $x \in L = L(G)$, $|x| > N$ be given.

By $x \in L(G)$, we can take a parse tree T for x in the CFG G. By binary counting, T has at least $k+1$ edges in some path from the root S to a leaf variable that derived a terminal in x.

Consider the bottom $k+1$ nodes of that path.

By the Pigeonhole Principle, some $B \in \Sigma$ occurs at least twice in those bottom $k+1$ nodes.
Let only path case.

Take V to be the yield of the lower B.

Take U to be everything to the left of V that is derived by the upper B.

Take W to be everything to the right of V that is derived by the upper B.

Take Y to be the rest of X to the left of U, Z the rest of X to right of W.

Let any $i \geq 0$ be given. Then $x^{(i)} = y u v w z \in L(G)$ because we can splice or extend the parse tree between the two B's. This results in a legal parse tree for $x^{(i)}$, so $x^{(i)} \in L(G) = L$.

Contrapositive: Suppose L is any language such that

* for all $N > 0$
 * there exists an $x \in L$ with $|x| > N$ such that
 * for all productions $x = y u v w z \in L$ and $|u v w| \leq N$
 * there exists $i \geq 0$ s.t. $x^{(i)} = y u v w z$ is not in L.

Then L is not a CFL.