Defn: A \(K \)-tape TM (\(K \geq 1 \)) has the same components \(M = (Q, \Sigma, \Gamma, \delta, \omega, s, F) \) but \(\delta \subseteq (Q \times \Gamma^K) \times (\Gamma^K \times \Sigma^L \times \Sigma^R \times Q) \).

Instruction: \((p, c_1, c_2, \ldots, c_K, d_1, d_2, \ldots, d_K, q)\) can draw arcs similarly.

Picture:

The initial ID \(I_0(x) \) has all heads in column 1 with the first tape head scanning the first bit \(x_1 \) of \(x \) (or scanning a blank if \(x = \epsilon \)) and all other tapes are blank.

Defn of \(I \vdash^m J, I \vdash^m K \), accepting ID, and \(L(M) \): same.

Alternate convention: \(I \) includes a dedicated \(\ast \) char. Each tape has \(\ast \) in cell 0. Code \(\ast \) always moves \(R \) off a blank. \(\ast \) never moves \(L \) off \(\ast \).
With multi-tape TMs, often the input tape is read-only.

Further, it is often one-way: in δ, always $d_i = C_i$.

(in δ, always $D_i \neq L$, which essentially subsumes RO.)

A tape j behaves like a stack if $D_j = L \Rightarrow d_j = ____$ in all cases.

Def. A pushdown automaton (PDA: NPDA model) is equivalent to a 2-tape TM whose input tape is one-way and whose sole worktape behaves as a stack.

The one operational quirk is that shifting between push and pop steps needs an extra machine step.

Theorem: Given any CFG G, we can build an NPDA M s.t. $L(M) = L(G)$, and vice versa.

But, PAL and EVENPAL (without # markers) are examples of CFLs that have an NPDA but not a DPDA.

Def. A language A is a DCFL if there is a DPDA M such that $L(M) = A$.

$REG \supsetneq DEFL \supsetneq CFL \supsetneq$ decidable languages.

Section 2.4 talks about "deterministic CFGs" but the ones it gives are not equivalent.