
CSE396 Lecture Tue. 4/13: Decision Problems and Procedures

The TMs we have seen show off some basic capabilities of Turing Machines

• copying a string
• comparing two strings
• searching for a matching (sub-)string on a tape
• arithmetic like 3n + 1
• branching according to what char is read
• looping.

These operations suffice to build an interpreter for assembly code.

[Show the "Universal RAM Simulator" handout, discuss the Church-Turing Thesis, and explain why it
enables machines to be specified in pseudocode from here on out.]

Theorem 1: For every program written in any known executable programming language (high-P L

level or otherwise) that uses standard input and standard output, we can build a 3-tape Turing machine
 such that whenever given on standard input writes to standard output, given on its MP P x y MP x

input tape writes to a special output tape. If halts, then halts.y P x() M xP()

Proof: First, any compiler for to a known code target can be converted into a compiler from to L L

the "mini-assembler"---which is essentially similar to what the text calls a RAM. So we can compile P
to make an equivalent RAM program . Then take to be the Turing machine in the handout, RP MP T
but with the binary text of already written on its input tape. More precisely, begins with a series RP MP

of dedicated instructions that write out char-by-char in front of any input on its first tape, so it has RP x
 there. Then it just segues to the start state of . R #xP T ☒

Theorem 2: We can build a universal Turing machine, meaning a single TM that takes inputs of U
the form and simulates .⟨M, x⟩ M x()

Here denotes an unspecified but transparent way of combining the code of and the bits of ⟨M, x⟩ M x
into a single string over whatever alphabet we need. In the Turing Kit, user-designed Turing machines

 are stored as ASCII files, so that can be the code of . ASCII can be converted to strings over M ⟨M⟩ M
 if we so desire. The files are self-delimiting, so we can then define by just appending to 0, 1{ } ⟨M, x⟩ x

. Or, assuming that neither nor has any commas or angle brackets, we can regard as ⟨M⟩ M x ⟨M, x⟩
literally ' ' then whatever string code of , then comma, then , and finally ' '. The choice of tupling ⟨ M x ⟩

scheme does not matter in detail.

Proof: The Turing Kit is a high-level Java program that reads a TM and an input and executes P M x

. That is (essentially), . Then compile to as above and call it . Then M x() P ⟨M, x⟩ = M x() () P MP U
. This notation includes that if and only if . U ⟨M, x⟩ = P ⟨M, x⟩ = M x() () () U ⟨M, x⟩ ↓() M x ↓()

(The down arrow means "halts" while is read as "diverges" or "does not halt.") ↑ ☒

Both this and the next theorem are usually proved in more specialized ways in textbooks.

Theorem 3: For every nondeterministic TM we can build a deterministic TM such that N M

.L M = L N() ()

Proof: The Turing Kit could be upgraded to a version that simulates a given NTM on an input by T' N x
branching to try all possibilities, accepting if and when some branch accepts . The program itself is x T'

deterministic. Hence so is the equivalent Turing machine obtained from via Theorem 1. MT' T' ☒

The one thing we don't know how to do is make avoid exponential branching, which slows down the T'

time exponentially. This is different from the situation with an NFA on a given input , where we can N x
simulate by the trick of maintaining the current set of possible states after each bit of , and N x() Ri i x
thus avoid the exponential blowup of converting into a DFA. Whether we can do a similar trick for a N
general NTM is the infamous problem, which we will confront in the last week of the N NP = ? P
course. To set this up, we jump ahead a little to make the following definition.

Definition: A Turing machine runs in time if for all and inputs of length , halts within M t n() n x n M x()

 steps. If is nondeterministic, all possible computations must halt within steps.t n() M t n()

For example, every DFA---and every NFA without -transitions---runs in time , which is the 𝜖 t n = n + 1()
fastest possible time that reads every input char and the blank that says the input is terminated. (This
is sometimes called running in real time.) It is convenient to apply -notation to time without caring O
about the exact number of steps. All the 2-tape machines we have seen have run in time, which O n()

is called linear time, but some of the 1-tape machines have run in time, which is quadratic 𝛩 n2

time. This is no accident:

Theorem: For any -tape TM that runs in time , we can build a 1-tape TM k M = Q,𝛴, 𝛤, 𝛿, ⎵, s, F() t n()

 that simulates and runs in time.M' M O t n()2

Proof Sketch: uses work alphabet , which can pack the chars in any "column " of the M' 𝛤' = 𝛤k k j k
tapes of into one "superchar" in cell on the one tape of . We also need chars that say whether M j M'

they are currently being scanned by a tape head of , so we actually have where M 𝛤' = 𝛤∪ 𝛤(⦿)k 𝛤⦿

is a "dotted copy" of . Initially, converts each char into the "superchar" which 𝛤 M' x() xi x ⎵⎵⎵…⎵[i]

packs and blanks into one char of and rewinds its single tape head onto the superchar xi k - 1 𝛤

 which lines up the "virtual" tape heads of on and blanks below it to the left ∧ ⎵ ⎵ ⋯ ⎵[⦿ ⦿ ⦿ ⦿] k M ∧

of . Thereafter, simulates each step of in one left-to-right pass that reads the -tuple of x M' M k
scanned characters according to which parts of superchars have and then a right-to-left pass that ⦿

performs the corresponding instruction of . The total time for each pass is initially but can grow 𝛿 2n + 4

if and when uses more tape cells beyond the end(s) of . The width of a pass cannot be more than M x
(twice the) time taken by thus far, so it is always less than (or less than , if uses cells to M t n() 2t n() M

the left of as well). Thus the total time is . x O t n()2 ☒

There are cases where quadratic time expansion cannot be improved, but that will be AOK when
running in time , which is called polynomial time, is what we care about. Also FYI, if we have a nO 1()

"fair cost" running time function for an algorithm in our favorite high-level programming language t n()

, then the 3-tape TM in the "Universal RAM Simulator" handout runs in time as coded and L O t n()4

time if coded more cleverly. So "polynomial time" is the same for the basic 1-tape TM O t n n()2 log

model as it is for our real programs [maybe unless quantum computers ever become real]. This all
has three main takeaways, IMHO:

1. The Turing machine model (especially allowing 2 or 3 tapes) remains a quite realistic model of
computation.

2. The Church-Turing Thesis extends to a polynomial-time version that claims all machines ever
built (will) have broadly equivalent benchmarks for feasible time, and extends to say that Nature
is lexical.

3. This enables us to regard procedures specified in prose to be fully equivalent to Turing
machines and other computing models---even for broadly judging their time efficiency.

Point 3 includes saying that a total Turing machine (i.e., one that halts for all inputs), a flowchart in
which every component terminates (conventionally enclosing it in a "solid box"), and pseudocode in
which every loop terminates, can all be regarded as equivalent forms of a decision procedure.

Decision Problems
TopHat 4899
[The next material is not on Prelim II.] The Sipser text adopts the format for specifying decision
problems that came from an older text by Michael Garey and David S. Johnson:

[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.]
QUESTION: [a yes/no condition where yes means the input is accepted]

INSTANCE is also called INPUT; one can abbreviate it to INST and QUESTION to QUES. The
language of the problem is the set of valid instances for which the answer is yes. Sometimes
confusingly, the name of the problem usually doubles as the name of the language. The Sipser text
also established a standard scheme for naming various decision problems that arise with the various
machine, regexp, and grammar classes in this subject. It is best described by example.

: (The "Acceptance Problem for DFAs")ADFA

INST: A DFA and a string . M = Q,𝛴, 𝛿, s, F() x ∈ 𝛴
*

QUES: Does accept ?M x

The input to a decision procedure for this problem is given in the form . The language is⟨M, x⟩

.A = ⟨M, x⟩ : M is a DFA and M accepts xDFA { }

The length of can be reckoned as roughly of order where is the number of states in N ⟨M, x⟩ m + n m
 (note that the number of instructions for a DFA is times and we can treat as a fixed Q m |𝛴| |𝛴|

constant such as) and as usual. The alphabet of the language can be reckoned as 2 n = |x| ADFA

ASCII or even as . Here is a simple statement of an algorithm to solve the problem:0, 1{ } ADFA

1. Given , first decode and individually. (If not possible, reject.)⟨M, x⟩ M x
2. Run (using a simulator like the Turing Kit) until the DFA reaches the end of .M x() x
3. Accept if accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩

This pseudocode always halts because a DFA always halts. To simulate a step of takes time M M x()

at most order- ; really it can be time per step using good data structures (mainly being able m O m(log)

to assign a pointer to the destination state in any executed instruction). So the running time is O mn()

which gives time taking the length into account. Thus we can say:O N2 N = |⟨M, x⟩|

• The algorithm is a decision procedure to solve the problem.ADFA

• Hence the problem and the language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.

Now suppose we have an NFA in place of the DFA.

: (The "Acceptance Problem for NFAs")ANFA

INST: An NFA and a string . N = Q,𝛴, 𝛿, s, F() x ∈ 𝛴*

QUES: Does accept ?N x

The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode and individually.⟨N, x⟩ N x
2. Convert into an equivalent DFA .N M
3. Then run the decision procedure for on and give the same yes/no answer.ADFA ⟨M, x⟩

Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped"
instance of the) former problem. But step 2 makes this an inefficient reduction---it can require order-of

 time where we are now calling the number of states in . Then again, step 2 does always halt, 2m m N
so if halting is all you care about, it goes as a decision procedure. But faster is:

1. Given , first decode and individually.⟨N, x⟩ N x
2. Initialize to be the -closure of the start state of .R0 𝜖 N
3. For each char of , build the set of states reachable from a state in by processing .xi x Ri Ri-1 xi

4. Accept if and only if , which is if and only if accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x

For each char , step 3 runs in time at worst (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in . O m n2 |⟨N, x⟩| ≈ m + n

(Non-)Emptiness Problems

This is the first of numerous problems in which the instance type is "Just a Machine."

:NEDFA

INST: (The string code of) A DFA .⟨M⟩ M = Q,𝛴, 𝛿, s, F()

QUES: Is ?L M ≠ ∅()

The QUESTION is worded oppositely from the text's wording of , which we'll come to. Here is an EDFA

efficient decision procedure:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨M⟩ M
2. Execute a breadth-first search in that graph from the start node of (the graph of) .s M
3. If the search terminates having visited at least one state in , accept , else reject.F ⟨M⟩

The BFS in step terminates---indeed, in time at worst since the graph has nodes. [Well, it 2 O m2 m

has edges, so you can get better time with random access to good data structures.] The O m()

procedure is correct because if BFS finds a path from to a state in , then the chars along that path s q F
form a string in , so .L M() L M ≠ ∅()

The complementary problem (" " for emptiness) is:E

:EDFA

INST: A DFA .M = Q,𝛴, 𝛿, s, F()

QUES: Is ?L M = ∅()

The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨M⟩ M
2. Execute a breadth-first search in that graph from the start node of (the graph of) .s M
3. If the search terminates having visited at least one state in , reject , else accept.F ⟨M⟩

The corresponding problems for NFAs are just as easy: they have the same algorithms:

:NENFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F()

QUES: Is ?L N ≠ ∅()

Solution:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨N⟩ N
2. Execute a breadth-first search in that graph from the start node of (the graph of) .s N
3. If the search terminates having visited at least one state in , accept , else reject.F ⟨N⟩

This is BFS explicitly in the graph of with node set . It is not the same as the BFS used to convert N Q

an NFA into a DFA, which ran implicitly on the power set of . Also "the same" is:2Q Q

:ENFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F()

QUES: Is ?L N = ∅()

Solution: run the decision procedure for but interchange the yes/no answers.NENFA

Now we consider a different kind of complementation:

:ALLDFA

INST: A DFA .M = Q,𝛴, 𝛿, s, F()

QUES: Is ?L M = 𝛴() *

Solution:

1. On input , form the complementary DFA with .⟨M⟩ M' = Q,𝛴, 𝛿, s, F'() F' = Q ⧵ F
2. Feed to the decision procedure for .⟨M'⟩ EDFA

3. If that procedure accepts , then accept , else reject .⟨M'⟩ ⟨M⟩ ⟨M⟩

This embodies what in Chapter 5 we will call a mapping reduction from to . The ALLDFA EDFA

reduction and the whole procedure are correct because .L M = 𝛴 ⟺ L M' = ∅() * ()

This is not the same as the way we complemented to , and the best way to see why it's NEDFA EDFA

not so simple is to consider the analogous problem for NFAs.

:ALLNFA

INST: An NFA .N = Q,𝛴, 𝛿, s, F()

QUES: Is ?L N = 𝛴() *

We can solve this by converting into an equivalent DFA and running the decider for on N M ALLDFA

. But that can take exponential time. Can we use the same idea as for of reducting to the ⟨M⟩ ALLDFA

corresponding emptiness problem, , which we solved just as efficiently as for ? The problem ENFA EDFA

is that we can't directly complement an NFA. Surely some other idea can help? The fact is, this
problem is -hard. Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth) NP

believe that no such algorithm exists.

Two-Machine Problems

Here the input has type "Two Machines", meaning a pair . If the input does not have this w ⟨M , M ⟩1 2 w
pair form, it is rejected to begin with.

:EQDFA

INST: Two DFAs and .M = Q ,𝛴, 𝛿 , s , F1 (1 1 1 1) M = Q ,𝛴, 𝛿 , s , F2 (2 2 2 2)

QUES: Is ?L M = L M(1) (2)

The fact that gives an efficient decision procedure is that two sets and are equal if and only if their A B
symmetric difference is empty. The symmetric A△B = A ⧵B ∪ B ⧵A = A∪B ⧵ A∩B() () () ()

difference is often written , with also used to mean XOR. Thus if we apply the Cartesian A⊕B ⊕

product construction to and with XOR as the operation, to produce a DFA , then the answer M1 M2 M3

is yes if and only if .L M = ∅(3)

Solution:

1. Decode a given input string into DFAs and . (If does not have that w = ⟨M , M ⟩1 2 M1 M2 w
form, reject.)

2. Create the Cartesian product DFA with M = Q ,𝛴, 𝛿 , s , F3 (3 3 3 3)

.F = q , q : q ∈ F XOR q ∈ F3 {(1 2) 1 1 2 2 }

3. Feed to the decision procedure for , and accept if and only if that accepts ⟨M ⟩3 EDFA ⟨M , M ⟩1 2

.⟨M ⟩3

If is the maximum of the number of states in and in , then step runs in time (ignoring m Q1 Q2 2 O m2

the length of state labels). Step 3 is run on a quadratically bigger machine, so its own quadratic mlog

time becomes overall, but that's AOK---still polynomial in . But how about:O m4 m

:EQNFA

INST: Two NFAs and .N = Q ,𝛴, 𝛿 , s , F1 (1 1 1 1) N = Q ,𝛴, 𝛿 , s , F2 (2 2 2 2)

QUES: Is ?L N = L N(1) (2)

We can get a decision procedure by converting the NFAs into DFAs and and testing whether M1 M2

. For decidability purposes, that is all we need to say, but it is inefficient. Can't we L M = L M(1) (2)

apply the Cartesian product idea directly to and ? If the operation is intersection or union, this N1 N2

makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear
reason for doubt: If we could solve efficiently in general, then we could solve it efficiently in EQNFA

cases where is a fixed NFA that accepts all strings. Then we would have:N2

 .⟨N , N ⟩ ∈ EQ ⟺ ⟨N ⟩ ∈ ALL1 2 NFA 1 NFA

But we have already asserted above that is -hard. So this blocks the attempt to solve ALLNFA NP

, and in fact, this shows that the problem is -hard as well.EQNFA EQNFA NP

One can define all these problems when the givens are regular expressions or GNFAs rather than
DFAs or NFAs. The Sipser naming scheme will write the problems as , , , EQRegexp AGNFA ALLRegexp

, and so on. They are all decidable because regular expressions and GNFAs are convertible NEGNFA

to NFAs and DFAs, but not always efficiently to the latter. Regular expressions and NFAs convert to

and from each other especially efficiently, and so the problems subscripted " " have much the Regexp

same status as those subscripted " ". When we extend the problems to context-free grammars, NFA

pushdown automata, and general (deterministic) Turing machines, however, we will "lose" a lot more.

Problems Involving Grammars

Again, let's "accentuate the positive" and start with the nonemptiness problem rather than the
emptiness problem.

:NECFG

INST: A CFG .G = V,𝛴,R, S()

QUES: Is ? (Nerdy version: Is ?)L G ≠ ∅() L G ∩𝛴 ≠ ∅() *

The following pseudocode to solve the problem is strongly analogous to breadth-first search:

bool changed = true;

set< > LIVE ; //constructed to have the terminalsV∪𝛴 = 𝛴
while (changed) {

 changed = false;

 for (each rule in such that LIVE) {A→W R A ∉

 if (is in LIVE) {W *

 LIVE = LIVE ;∪ A{ }
 changed = true;

 }

 } //LOOP INV: Every variable in LIVE can derive a terminal string

}

if (LIVE) accept; else reject;S ∈

By the loop invariant, if is ever added to LIVE then derives some terminal string, which means that S S

. Hence the algorithm is sound---that is, it never gives a false positive. Why does it always L G ≠ ∅()
terminate, and why is it comprehensive---that is, why does it halt and catch all "yes" cases?

• Each iteration of the while loop either adds a new variable to LIVE or leaves changed false.
• If changed is left false, the loop terminates right there.
• The number of times it can add a new variable is limited by the size of .V
• Hence the while loop must terminate within iterations. |V| + 1
• So the pseudocode defines a total Turing machine, that is, a decider.

Now why is it comprehensive? Suppose . Then there is a derivation of a terminal string L G ≠ ∅() x
from . The string can be ; this won't matter to the logic. The derivation has some number of S x 𝜖 k
steps and can be represented abstractly as

S ⟹ ⟹ ⟹ ⋯ ⟹ ⟹ ⟹ xX
k-1

X
k-2

X
2

X
1

The vector signs are to remind that each sentential form can include multiple variables and its own Xi

terminals as well. Note the indexing of in reverse order. Each has one variable that was expanded i Xi

in the step---wlog. it is the leftmost variable in ---and we can call it . It can be the same variable in X
i

Ai

different steps but we'll still call them . The first point is that must be the only variable in , Ai A1 X1

because replacing it leaves a terminal string. Put another way, the right-hand side of the rule

 A1 →W
1

that was applied in the last step must be all terminals (we could have , that's fine) and = 𝜖W1

everything else in must be terminals. Since all terminals are initially in the set LIVE, we have the X
1

following facts:

• The rule has .A1 →W1 ∈ LIVEW1
*

• Hence the algorithm on the first iteration includes into .A1 LIVE

• On the next iteration, belongs to .X
1

LIVE
*

• Whatever rule was applied at the next-to-last step, it has in that iteration.A2 →W2 ∈ LIVEW2
*

• Hence the second iteration adds to (if wasn't there already by virtue of being the A2 LIVE
* A2

same variable as).A1

What this adds up to is that by induction on we can prove the statement "the variable is i Q i ≡() Ai

added to the set on or before the -th iteration." Then with the variable " " is none other LIVE i i = k Ak

than . S

• Thus the algorithm adds to , and so it gives the true-positive answer "yes." S LIVE

• This means the algorithm captures all true positives, so it is comprehensive.
• Since it has no false positives, it is correct.
• Thus the problem is decidable.NECFG

• Since whenever we have a total Turing machine, we can complement the language by
interchanging and , the complementary problem "Given a CFG , is qacc qrej E ≡CFG G

?" is likewise decidable.L G = ∅()

• The algorithm runs within time , where means the number of rules but we also O |V| ⋅ |R| ⋅ r() |R|

have to allow for the maximum length of the right-hand side of a rule. Since the size of the r
(string encoding of the) grammar can be reckoned as order-of), this is at ⟨G⟩ G |V| + r|R|(

worse quadratic. Anyway, it is a polynomial-time decider for and .NECFG ECFG

Now we consider a different problem but with a closely related solution. The name is not standard but
is compatible with Sipser's naming scheme.

:EpsCFG

INST: A CFG .G = V,𝛴,R, S()

QUES: Is ? Equivalently (nerdily), is ?𝜖 ∈ L G() L G ∩ 𝜖 ≠ ∅() *

The algorithm needs changing only one line:

bool changed = true;

set< > NULLABLE ; //constructed to be the empty setV = ∅
while (changed) {

 changed = false;

 for (each rule in such that NULLABLE) {A→W R A ∉

 if (is in NULLABLE) {W *

 NULLABLE = NULLABLE ;∪ A{ }
 changed = true;

 }

 }

}

if (NULLABLE) accept; else reject;S ∈

The trick that gets this off the ground is our old friend . Thus, in the first iteration, all variables ∅ = 𝜖* { }

 such that is a rule get added to NULLABLE. (We could also have initialized the set NULLABLE A A 𝜖→

this way.) Every variable that is later added to NULLABLE truly derives , so the soundness of this B 𝜖

algorithm is clear, and the reason it terminates within iterations is the same. Its correctness is a |V| + 1

self-study exercise. Now we are ready to address the problem .ACFG

: (The "Acceptance Problem for CFGs")ACFG

INST: A CFG and a string . G = V,𝛴,R, S() x ∈ 𝛴*

QUES: Is ?x ∈ L G()

A decision procedure:

1. If , apply the decision procedure for and accept iff it accepts .x = 𝜖 EpsCFG ⟨G, x⟩ ⟨G⟩
2. Else, convert into a Chomsky normal form grammar such that G G' = V',𝛴,R', S'()

, so that .L G' = L G ⧵ 𝜖() () { } x ∈ L G ⟺ x ∈ L G'() ()

3. Noting that if and only if derives in exactly steps, where , we can S' ⟹ x* S' x 2n - 1 n = |x|

exhaustively try all derivations of steps, and accept if and only if at least one of them 2n - 1

derived .x

Step 1 runs in polynomial time, but as-stated, steps 2 and 3 do not. The issue with step 2 as presented
in many other sources is that if we have a "long rule" like where each is nullable, A B B ⋯ B→ 1 2 r Bj

the conversion says to add all rules obtained by deleting any sublist of . This makes B , … . B(1 r) 2r

sublists, each of which might produce a different rule, and so takes exponential time. But a nifty trick is
that we can first shorten the rule using dedicated single-use variables:r - 2

, , , ..., , .A B D→ 1 1 D B D1 → 2 2 D B D2 → 3 3 D B Dr-3 → r-2 r-2 D B Br-2 → r-1 r

Then the overall number of rules is multiplied by at most , which keeps the expansion of the grammar 2r
within a polynomial factor of the original data-size of . The text does something related to this in its G
own incremental way of handling nullable variables when it describes the conversion to Chomsky
normal form ins ection 2.1. (The remaining details of that are still FYI, skim/skip.)

Step 3 can exponentiate or worse if there are at least 2 choices for the applications of a non-2n-1 n - 1
terminal rule in the derivation. However, there is a nifty dynamic programming algorithm that is
sometimes mentioned in CSE331 or software-systems courses, called CYK or CKY for its authors
Cocke, Kasami, and Younger. It does step 3 in polynomial time, thus completing a polynomial-time
decider for . (This is mentioned later in the text, but IMHO not so clearly.)ACFG

Since we did , how about the corresponding "all"-type problem?ACFG

: ALLCFG

INST: A CFG . G = V,𝛴,R, S()

QUES: Is ?L G = 𝛴() *

Shock fact: This problem is not decidable at all. Indeed, there does not even exist a Turing machine

 such that , let alone one that is total. The proof of this will come later M L M = ⟨G⟩ : L G = 𝛴() () *

in Chapter 5, but we will reach it by starting with undecidable problems that involve Turing machines
themselves as the data objects.

[This will be about the middle of Thursday's lecture. It will continue into the rest of Chapter 4, but with a
different order of business:

• Less attention to the analogy with showing the real numbers are uncountable by diagonalization--
-skim/skip that.

• Instead of using the Halting Problem as the first undecidable problem, or its close cognate the
"Acceptance Problem" for deterministic Turing machines , it A = ⟨M, w⟩ : w ∈ L MTM { ()} M
will start with the "diagonal language" .D = ⟨M⟩ : ⟨M⟩ ∉ L MTM { ()}

• The text implicitly uses in its undecidability proof at the end of chapter 4, but refers to it in DTM

terms of an impossible machine rather than a language. I will try to make clear what stuff is real
and what is nonexistent/counterfactual/"quixotic". The language is real.DTM

I often leave the diagonalization proof as a "cliffhanger" at the end of one lecture and revisited at DTM

the start of the next lecture, but we may still be mid-lecture. Then I will finish showing that the ATM

language is undecidable, even though (unlike) it is computably enumerable (c.e., with many DTM

synonyms for both "c.e." and "decidable" being out there).]
;

