A - Acceptance Problem for DFAs.

INSTANCE: A DFA \(M = (Q, \Sigma, \delta, s, F) \) and an argument \(x \in \Sigma^* \)

QUESTION: Does \(M \) accept \(x \)?

The language of the problem is the set of instances for which the answer is "yes". Often the same name of the problem is used for the language.

A DFA = \{ \langle M, x \rangle \}: \ M \text{ accepts } x, \ ie. \ x \in L(M) \ ? \ . \ Could \ write \ L(\text{A DFA} \text{ but that's quirky.} \\

Fact: The A DFA (language is decidable. To prove we can sketch a decider in pseudocode.

Decider: On input \(w = \langle M, x \rangle \),

1. Run the Turing Kit with \(M \) loaded and \(x \) on the tape.

2. It will halt since \(M \) is a DFA.

3. Hence the simulation will either accept \(x \), in which case your routine accepts \(\langle M, x \rangle \); else it will reject, so your routine holds and rejects.

EDFA: INST: Just a DFA \(M \) \ (no "x")

Ques: Is \(L(M) = \emptyset \)?

Language = \{ \langle M \rangle : L(M) = \emptyset \}

NE \(\text{DFA} \) = \{ \langle M \rangle \mid \exists x \colon \text{DFA but not technically the complement}\}

As a language, this is \{ \langle M \rangle : L(M) \neq \emptyset \} \sim \text{not technically the complement, the strings that are not valid } \langle M \rangle \text{ belong to neither
Because the complement of a decidable language is decidable, and because in every language except C++ we can decide whether a program code will compile, a full template meta-programming tool decide E DFA it suffices to give a decider for N E DFA.

FACT: \(L(M) \neq \emptyset \iff \) there is a path in the graph of \(M \) from start to some accepting state.

NB: If \(F = \{ s \} \) and no other strings besides \(s \) get accepted, we still have \(L(M) = \{ s \} \neq \emptyset \), so \(L(M) \) is in the N E DFA language. The path in this case has 0 steps. The computation on \(s \) is just (S).

We can enumerate all states reachable from \(s \) by paths using BFS, which was already exemplified for the NFA to DFA construction. In this case, however, the \(n \) possible states of \(M \) that might be seen is known in advance. So BFS runs in \(O(n^2) \) time, no "explosion". Thus BFS gives an (efficient) decider for N E DFA, hence also E DFA.

How about \(\forall N \in \text{NFA} : L(N) \neq \emptyset \)?

The same FACT holds for NFA's \(N \), so we can use the same BFS proc. Thus ENFA is (efficiently) decidable too.

How about \(\forall M \in \text{DFA} : L(M) = \Sigma^* \)? We can reduce to the already solved E DFA problem.

1. Convert \(M \) to \(M' \) (efficient: \(F + F' = Q \setminus F \)) s.t. \(L(M') = \sim L(M) \).
2. Run our E DFA decider on \((M') \), and accept iff it all works.

How about \(\forall N \in \text{NFA} : L(N) = \Sigma^* \)? Decidable but likely not efficiently. The problem is NP-hard (Ch.7)
\[EQ_{DFA} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs and } L(M_1) = L(M_2) \}. \]

Key Idea: \(L(M_1) = L(M_2) \iff L(M_1) \bigtriangleup L(M_2) = \emptyset. \)

Decision: 1. Build \(M_3 \) as at right.
2. Run the \(EQ_{DFA} \) decision on \(\langle M_3 \rangle \).
3. Accept \(\langle M_1, M_2 \rangle \) if \(step \ 2 \) accepts.

\(NEQ_{DFA} \) is (essentially) the complement of \(EQ_{DFA} \), hence decidable.

But \(EQ_{NFA} \) is reducible from \(ALL_{NFA} \), \(EQ_{NFA} = \{ \langle N_1, N_2 \rangle : N_1 \text{ and } N_2 \text{ are NFAs by building } N_1 = N, N_2 = \begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\circ
\end{array} \text{ which is a NFA.} \text{ and } L(N_1) = L(N_2) \}, \)

Nevertheless, is decidable by converting \(N_1 \) and \(N_2 \) into equivalent DFAs \(M_1 \) and \(M_2 \), then using the \(EQ_{DFA} \) decision. Just not efficient in general.

\(E_{CFG} \)

INST: A context-free grammar \(G = (V, \Sigma, R, \text{S}) \)

QUEST: Is \(L(G) = \emptyset \)?

Essential Complement \(NE_{CFG} = \{ \langle G \rangle : G \text{ is a CFG and } L(G) \neq \emptyset \} \).

Is \(NE_{CFG} \) decidable? Is it efficiently decidable?

By a loop "like" \(\Theta \)?

Similar Problem

\(\varepsilon_{CFG} \)

INST: \(G \)

QUEST: Is \(\varepsilon \in L(G) \), i.e., does \(S \Rightarrow^* \varepsilon ? \)