Sipser's Problem Naming Scheme:

A: "Does M accept x?"
- accept
E: "Is $L(M) = \emptyset$?"
NE: "Is $L(M) \neq \emptyset$?"
ALL: "Is $L(M) = \Sigma^*$?"

Two givens:
E: for empty?

Has just one given: an encoding of a machine M

NE for non-emptiness: $(\exists x) x \in L(M)$?

x is quantified: not a give

Empty \emptyset: Given M_1 and M_2, is $L(M_1) \cap L(M_2) = \emptyset$?

EQUAL: Given M_1 and M_2, is $L(M_1) = L(M_2)$?

The above problems talk only about accept/reject and can be worded the same:

to be about regexps r or grammars G.

More specific to machines, we ask:

HALT (HP): Given M and x, does $M(x) \downarrow$?

TOT: Given just M, does M halt for all inputs? $(\forall x) M(x) \downarrow$?

How Problems are Specified:

A DFA M and an $x \in \Sigma^*$

Input: A DFA M and an $x \in \Sigma^*$

QUERY: Does M accept x?

Name of problem: often synonymous with the language $L(M)$ of the machine

Language is

$L = \{ z = \langle M, x \rangle : \text{the answer is yes, i.e. } M \text{ accepts } x \}$
Algorithm to decide A DFA problem/ling.

0. Given DFA M and \(x \in \Sigma^* \) (M = (Q, \Sigma, \delta, s, F))

1. Run M on \(x \). M must halt within \(|x|+1 \) of its own steps.

2. If M accepts \(x \), you accept \(\langle M, x \rangle \). If not, you reject \(\langle M, x \rangle \).

Since your algorithm is total, the A DFA language is decidable.

The code in both cases can be the "Turing Kit" Turing Kit is not a decider — not total — but does show that the AOA language is computably enumerable.

We will see next week that AOA is not in \(\text{DEC} \).

But A DFA is decidable, because when M is a DFA, both M and Turing's Kit on M are guaranteed to halt.
APDA: Input: A DPDA $M = (Q, \Sigma, \Gamma, \delta, \epsilon, q_0, F)$ and an $x \in \Sigma^*$.

Question: Does M accept x?

ANFA:

Instance: An NFA N, an $x \in \Sigma^*$.

Question: Does N accept x?

Can convert N to an equivalent DFA M, then run $M(x)$.

But this can incur exponential blowup in time.

Can solve in $\text{poly}(|x|)$ time by simulating $N(x)$ directly. Keeping track of which states are currently lit.

This is how UNIX `grep` and scripting langs solve DFA.

ENFA:

Instance: An NFA N.

Question: Is $L(N) \neq \emptyset$?

$L(N) \neq \emptyset \iff N$ has a path from s to some state in F.

Algorithm:

- Do Breadth-First Search starting from s.
- This is a decider. Must halt within $|Q|$ iterations, $m = |Q|$.
- Accept $\langle N \rangle$ iff some state in F is found.
How about ALL DFA? \[\frac{I: \text{ A DFA } M=(Q, \Sigma, \delta, s, F)}{Q: \text{ asks } L(M) = \Sigma^* ?} \]

Decider:

1. Given \(M \), first convert \(M \) into \(M' \) s.t. \(L(M') = \sim L(M) \) i.e. \(\Sigma' \setminus L(M) \).
 - Hence \(L(M) = \Sigma' \Leftrightarrow L(M') = \emptyset \Leftrightarrow \langle M' \rangle \notin \text{NBDFA} \)

2. Feed \(\langle M' \rangle \) to your algorithm for \(\text{NBDFA} \). If it accepts, you reject.

So this is a correct decider. (Idea for we reduced ALL DFA chs. to the \(\text{NBDFA} \) problem)

How about ALL NFA?

Possible decider in flowchart form.

Decider, but not in \(\text{poly}(n) \) time.

How about ALL DPOA?

How about ALL NPDA and ALL CFG?

In fact, \text{ THERE IS NO DECIDER! }