
CSE396 Lecture Thu. 4/22: Undecidability
 
Picking up from before, we defined the Acceptance Problem for Turing machines:
 
A :TM

INST: A deterministic Turing machine  and an input  to .M w M

QUES: Does  accept ?M w
 
Sometimes regarded same as the Halting Problem, but we prefer to define that separately:
 
HP :TM

INST: A deterministic Turing machine  and an input  to .M w M

QUES: Does ?M w ↓( )

 
The  language is .  There is indeed a Turing machine that accepts (exactly) ATM ⟨M, w⟩ :  w ∈ L M{ ( )}

it:  where  is any universal Turing machine, such as the one in Tuesday's lecture.  But A  =  L UTM ( ) U

recall that  is not total: whenever ,  too.  We will see that there is no decider for U M w ↑( ) U ⟨M, w⟩ ↑( )

.  The text states and proves this directly, but we will get there by a parallel road: the following ATM

defines the "diagonal language" in place of the text's "diagonal machine ."D
 
D :TM

INST: A deterministic Turing machine .M

QUES: Does  not accept its own code ?M ⟨M⟩

 
The language is .  Note that the case , that is,  D  =  ⟨M⟩ :  M does not accept ⟨M⟩  TM { } M ⟨M⟩ ↑( ) M

not halting on its own code, counts as  being in the language even though you can't ⟨M⟩ DTM

immediately "register" that condition.  
 
Theorem: The language  is not c.e.---that is, there does not exist a TM  such that .DTM Q L Q  =  D( ) TM

 
I am using the letter  in a new way, to refer to a whole machine rather than its set of states, in order to Q
reinforce the point that this machine does not actually exist although the proof involves talking about it 
as if it did.  We can say  is quixotic, after Don Quixote.Q
 
Proof.  Suppose such a  existed.  Then it would have a string code .  Then we could run  Q q =  ⟨Q⟩ Q

on input .  The logical analysis of that run, on hypothesis , is:q L Q  =  D( ) TM

 
                          by Q accepts q ⟺    q is in DTM L Q  =  D( ) TM

                                    by definition of .⟺ Q does not accept q q ∈  DTM

 
The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition.  The 
rollback goes all the way to the first sentence of the proof.  So such a  cannot exist. Q ☒

 

 



 
It is worth reworking this proof in several ways.  One is to follow the chain of implications in both 
directions like a cat chasing its tail:
 

"If  accepts its own code , then .  But , which by definition is the language Q q q ∈ L Q( ) L Q = D( ) TM

of codes of machines that do not accept their own code.  So  must not accept its own code .  Q q

But then  meets the definiton for being in .  Since we have  to begin with, this q DTM D = L QTM ( )

means  accepts its own code .  But if  accepts its own code , then..."Q q Q q
 
Another help is to compare with an abstract proof about sets.  Consider functions  whose arguments f

are elements of a set  and whose outputs are subsets of .  The  function from an NFA A A p, c𝛿( )

becomes such a function when you fix the char .  Thus we write  where  denotes the c f :  A P A→ ( ) P

power set.  Then  being onto would mean that every subset of  is a value of  on some argument(s). f A f
 But we have:
 
Theorem: No function  can ever be onto .f :  A P A→ ( ) P A( )

 
Proof: Suppose we have a function .  Then we do have the subsetf :  A P A→ ( )

 
.D  =  a ∈  A :  a is not in the set f a{ ( )}

 
By  being onto, there would exist  such that .  But then:f d ∈  A f d  =  D( )

 
                    by d ∈  D ⟺  d is in the set f d( ) f d  =  D( )

                            by definition of .⟺ d is not in the set f d( ) d ∈  D
 
The contradiction rolls back to the beginning, so  cannot be onto the power set . f P A( ) ☒
 
When  is a finite set, this is obvious just by counting.  Suppose .  Then there are A A =  1, 2, 3, 4, 5{ }

 subsets but only  elements of  to go around.  As the size of  increases this becomes 2  =  325 5 A A

"more and more obvious."  The historical kicker is that the proof works even when  is infinite.  Georg A

Cantor gave ironclad criteria by which it follows that  always has higher cardinality than .  In the P A( ) A

case where  or  this tells us that the set of all languages has higher cardinality than A =  N A =  𝛴*

, i.e., is not countably infinite.  Because we have only countably many (string codes or Gödel A
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.  
The function  cannot be onto .f ⟨M⟩  =  L M( ) ( ) P 𝛴*

 
Many sources give the illustration where the real numbers  are used in place of .  There is a R P 𝛴

*

nagging technical issue that two different decimal or binary expansions like  and  0.01111... 0.1000...

can denote the same number (0.5 in this case) but in decimal one can avoid it.  The real number that is 
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name 
diagonalization for the whole idea.  But I like to do without it.

 

 



 
Yet another variation is to define  with regard to other progarmming formalisms besides Turing D
machines, for instance:
 

System.exit(0) .D = p :  p compiles in Java to a program P such that P p  does not execute Java { ( ) }

 
If  were c.e. then by the equivalence of Java and TMs, there would be a Java program  such DJava Q

that  (where acceptance means exiting normally).  Then  would have a valid code  L Q  =  D( ) Java Q q

that compiles to  and ... the logic is the same as before.Q
 
For a "technote", if we add to  the strings  that do not compile in Java, it does not change the DJava p'

logic.  The resulting "augmented" language  still does not have a program  that accepts it, D'Java Q

because the above reasoning was all about valid codes---if  existed then it would have a valid code , Q q
and that's enough to drive the contradiction.
 
 
From Undecidability of  to DTM ATM

 
The following is the complementary problem to .  The name with " " is not used here in Sipser's DTM K
text but is a natural add-on to Sipser's naming scheme:
 
K :TM

INST: A deterministic Turing machine .M

QUES: Does  yes accept its own code ?M ⟨M⟩

 
The language, also called  or often just " ", is .  This language is not literally KTM K ⟨M⟩ :  ⟨M⟩ ∈ L M{ ( )}

the complement of  because of strings  that are not valid codes  of Turing machines.  But DTM p' ⟨M⟩

 is the literal complement of the augmented language  we would get if we threw all those KTM D'TM

invalid codes  into .  Now here is the reasoning of why  is undecidable:p' DTM KTM

 
1. If  were decidable, then there would be a total Turing machine  such that .KTM VK L V = K( K) TM

2. Because  is total, if we interchange its  and , then we would get a total machine  VK qacc qrej V'

such that .  L V' =( ) L V( K)

3. But , which is the diagonal language plus all strings that are not valid TM codes.= D'KTM TM

4. So  would be a TM  such that ---but we just showed that such a  cannot exist.V' Q L Q = D'( ) TM Q

5. Thus  cannot exist as a total machine, so  is undecidable.VK KTM

 
Now there does exist a machine  that accepts : On input , double it up to become  UK KTM ⟨M⟩ ⟨M, M⟩

and run our universal TM  on that.  If  accepts its own code, then  will accept , and vice-U M U ⟨M, M⟩

versa.  The machine  is not total, though, because whenever  doesn't even halt on its own code, UK M

the run of  won't halt either.  Finally, a similar chain of reasoning tells us why the  U ⟨M, M⟩( ) ATM

 

 



problem is undecidable:
 

1. If  were decidable, then  could be replaced by a total machine  such that ATM U V

.L V = L U  =  A( ) ( ) TM

2. But then using  in place of  above would make a total machine  such that .V U VK L V = K( K) TM

3.  We just showed that such a  cannot exist.  So  cannot exist, so  is undecidable.VK V ATM

 
 
The text combines these elements into one chain to prove that  is undecidable.  There are ATM

advantages to that, but one plus point of our breakdown is that we can map out more languages.  Here 
is our first example of what I call a landscape diagram (or "cone diagram"):
 

 
 
A Turbid Historical Melange of Confusions and Synonyms
 
Alan Turing used the word computable in English---134 times in his famous 1936 paper---but applied it 
to numbers in a way that got used for single outputs as well as whole languages or functions.  The 
substring "ecidable" appears 0 times in his paper.  The usage "computable language" never took hold 
the way "computable function" does today---and nobody says "decidable function."  Alonzo Church had 
already done equivalent work via systems of recursion, and the word recursive became applied to both 
languages and functions, meaning decidable for languages and total computable for functions .  f

(The latter term enforces that , whereas partial computable allows  to be undefined Dom f = 𝛴( ) * f x( )

for some strings .)  Turing traveled from Cambridge University to Princeton to become Church's PhD x
student in 1936--38.
 
If  is a Turing machine that is not total, we can still recursively enumerate the strings it accepts by M

running an infinite loop for t = 1,2,3,4,... whose body does the following for each iteration : try t

 for all strings  of length up to  for  steps, and print out any  that gets accepted.  This defines M x( ) x t t x
what the text calls an enumerator.  It's IMHO confusing because an enumerator has no input and 
never halts, but the usage stuck, and languages accepted by Turing machines became called 
recursively enumerable, abbreviated r.e.  (I will not mention enumerators otherwise.)

 

 

REC

RE co-RE

neither c.e. nor co-c.e. This diagram conveys some extra information:
 is closed under complements, ◎ REC

, ◎ RE ∩  co-RE =  REC

 and more to come in Ch. 5 involving ◎

mapping reductions and complete languages.

DTM
KTM ATM

 is the class of decidable languagesREC

 is the class of computably enumerable languagesRE

co-  is the class of complements of c.e. languages.RE

Mirror-reflection shows complementation



 
Recursive and r.e. were the standard terms 40+ years ago.  Church visited UB in 1990 so my using 
them when I arrived in 1989 was not out of place.  But others were already feeling that those terms 
sounded too remote.  Decidable took over the former usage, but what to do with the latter?  The term 
computably enumerable with abbreviation c.e. gained a following and was adopted by newer texts.  
Sipser ducked the issue by preferring recognizable, which begins with the letters "re"---yet has its own 
confusion because others have used it to mean decidable.  But: the classes of languages retain their 
old names:  for recursive/decidable and  for r.e./c.e.  I've seen "DEC" once or twice, but "CE" REC RE

never.  So to sum up:
 

• The terms decidable and recursive are synonyms, and the class of such languages is called 
.REC

• The terms computably enumerable (abbreviated c.e.) and recursively enumerable (r.e.) are 
synonyms, as are the terms (Turing-)acceptable and (Turing-)recognizable.  The latter is used 
in our text, but I personally shy away from it---partly for the next reason too.  The class of such 
languages is (only) called .RE

• The complement of a recognizable language is called co-c.e. or co-r.e.  The usages "co-
recognizable" or "co-computably enumerable" would be too painful for words...  The class of 
such languages is only called co- .RE

• A computable function  is called computable (or recursive), but you still have to clarify f

whether its domain is all of  (or equivalently for numerical functions, is all of the natural 𝛴
*

numbers ) or allows  to be a partial function.N f
 
 
Some Theorems
 
The fact of the complement of a decidable language being decidable can now be stated as a closure 
property: the class  (like the class  of regular languages and the class  of DCFLs, but REC REG DCFL

not like the class  of CFLs) is closed under complements.  But we can prove something more:CFL

 

Theorem: A language  is decidable if and only if  and its complement  are both c.e.  L L L
 
Put another way,  is decidable iff  is both c.e. and co-c.e.  This can be summarized in a Venn L L

diagram manner as .REC =  RE ∩  co -RE
 

Proof: If  is decidable then it is automatically c.e.  And its complement  is also decidable, which L L
makes it c.e. too.  So the "only if" part is immediate.  The "if" part is trickier:
 

 Suppose  and its complement  are both c.e.  That means there are Turing machines  and  L L M1 M2

such that  and .  Now neither  nor  is guaranteed to halt on a given input L M = L( 1) L M =( 2) L M1 M2

.  But each must halt on the inputs  that it accepts---and by , every string  gets x x L ∪  = 𝛴L * x

 

 



accepted by  or by .  This allows us to combine  and  into a single machine, for which I M1 M2 M1 M2

will introduce an old-fashioned simple form of flowchart notation:
 
 

 
Besides the text's pseudocode, flowchart diagrams are another acceptable way to specify Turing 
machines.  That is, they specify programs, and programs are already equivalent to TMs.  This TM  M3

is total because for any , it will exit either when accepts  or when  accepts ---and one of x M  1 x M2 x

them does.  And it accepts  if and only if  did the accepting, so .  Thus we x M1 L M = L M = L( 3) ( 1)

have built a total machine that recognizes , so  is decidable.   L L ☒
 

 
 
Mappings
 
If we have a total computable function , then we can put it, too, inside a solid box.  f :𝛴 𝛴* → *

Suppose we have a TM  that recognizes a language , and we design a TM  like so:MB B MA

 

 

 

Input x

Simulate 1 more
step of  on M1 x
(if not already halted)

Did  acceptM1

 on or beforex
    that step?

M :3

Accept

yes

Simulate 1 more
step of  on M2 x
(if not already halted)

Did  acceptM2

 on or beforex
    that step?

no

no yes

Reject

Convention: A solid border
means a process that once
entered is guaranteed to
exit.  If a process might not
halt, use a fuzzy border.

If either  orM x1( )

 rejects, weM x2( )

ignore that fact and
treat the "do 1 more
step" as a no-op.

REC

RE co-RE

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, ◎ RE ∩  co-RE =  REC

 , , and co-  are each closed◎ REC RE RE

     downward under mapping reductions,
  and  are complete languages ◎ ATM KTM

     for RE, and  is complete for co-RE.DTM

DTM
KTM ATM

A

B

Angle steeper than the walls means .A ≤  Bm



 
In either case, we have .  Putting  as well as , L M  =  x :  f x ∈ L M( A) { ( ) ( B)} A = L M( A) B = L M( B)

what we have is that for all , .  x ∈ 𝛴
* x ∈ A ⟺  f x ∈ B( )

 
Chapter 5's title topic "Mapping Reducibility" doesn't come until section 5.3, but we put it up-front:
 
Definition: A language  mapping-reduces to a language  if there is a total computable function A B

 such that for all ,  .  This is written .  f :𝛴 𝛴* → * x ∈ 𝛴* x ∈ A ⟺  f x ∈ B( ) A ≤  Bm

 
We also say  via  and call  a mapping reduction.  The historical term is to call  a many-A ≤  Bm f f f

one reduction to say that  need not be a 1-to-1 correspondence.  The above flowchart diagrams f
already prove the first two of the following main implications about mapping reductions:
 
Theorem: Suppose  and  are any languages such that .  Then:A B A ≤  Bm

(a) If  is decidable, then  is decidable.B A

(b) If  is c.e., then  is c.e.B A

(c) If  is co-c.e., then  is co-c.e.B A
 
Proof: Only part (c) is left to prove, and it needs only the fact that  is logically x ∈ A ⟺  f x ∈ B( )

equivalent to .  If  is co-c.e., then  is c.e., and we have .   By part (b), x ∈  ⟺  f x ∈A ( ) B B B ≤  A m B

this makes  c.e., which means that  is co-c.e.   A A ☒
 
We will use this to prove more problems to be undecidable---and more languages to be not c.e. or even 
neither c.e. nor co-c.e.---by applying the contrapositive form:
 
Theorem': Suppose  and  are any languages such that .  Then:A B A ≤  Bm

(a) If  is undecidable, then  is undecidable.A B

(b) If  is not c.e., then  is not c.e.A B

(c) If  is not co-c.e., then  is not co-c.e.  A B ☒

 

 

Input x

Compute y = f x( )

Run  open-endedly,M yB( )

not just for 1 step.  If and
when it accepts ,y

Accept x

M :A

If we know in advance
that  is total, thenMB

we get  total too:MA

Input x

Compute y = f x( )

Run  open-endedly,M yB( )

not just for 1 step.  If it
accepts ,          elsey

Accept x Reject x

M :A


