
CSE396 Lecture Thu. 4/29: Degrees of Undecidability
 
This lecture will conclude the coverage of Chapter 5, mainly skipping section 5.2.  To repeat some of 
Tuesday before we pick up in the middle of the first "reduction design pattern":
 
Three Design Patterns For Reductions
 
The motivation is similar to that in general code: the ideas of reductions are often reusable.
 
I. "Wait For It"
 
Long ago, certainly before Hamilton, I used to call the first one "Waiting For Godot" after the Samuel 
Beckett play in which (spoiler alert---wait, giving a spoiler alert for that play is an ultimate existential 
absurdity) ...  When we first had the Turing Kit and Java was new and intimations of the "Internet of 
Things" started to buzz, I called this the generic reduction to the "Brew Coffee" problem: if you switch 
on your Java-enabled coffee maker , will it brew coffee?  You see,  might ask Alexa to invoke the M' M'

Turing Kit on a given , and brew your coffee only if and when  accepts .  This year, with the ⟨M, w⟩ M w

Turing  note, I considered joking about the "ATM Problem": if you put your card in and try to £50

withdraw , will it give you a Turing or a background check that never halts?  But let's do it with a £50

problem that is actually highly relevant and attempted in practice when trying to cut down "code bloat" 
by removing unused classes from object-oriented code.
 
USEFULCLASS

Instance: A Java program  and a class  defined in the code of .P C P

Question: Is there an input  such that  creates an object of class ?x P x( ) C

 
We mapping-reduce  to the language of this decision problem.  We need to compute ATM

 such that:f ⟨M, w⟩  =  P( )

 
•  accepts for some ,  executes an instruction like C c = new C();M w ⟹ x P x( )

•  does not accept for all , never executes any statement involving .M w ⟹ x P x  ( ) C

 
I like to picture  as dropping  and  into a flowchart for :f M w P

 

 

⟨M, w⟩   ↪    P =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

execute C c = new C();

w/o using class C



A key fine point in the correctness logic is that the class C does not appear anywhere else in the code 
of .  The main body of  can be entirely a call to the Turing Kit program with  and  pre-packaged.  P P M w

This body does not use any classes besides those in the Turing Kit itself.  Even if , whereupon M w ↑( )

 never halts either, it remains true that the class C is never used---so that removing it would not P

change the behavior of , not on any input .  P x
 
Building the program  is straightforward given any  and : just fix  and  to be the arguments in P M w M w
the call to the Turing Kit's main simulation routine and append the statement shown in the diagram after 
the place in the Turing Kit's own java code where it shows the String accepted dialog box.  Thus 
the code mapping  itself is computable, indeed, easily linear-time computable.f
 
The conclusion is that the problem of detecting (never-)used classes is undecidable.  It may seem that 
programs  are irrelevant ones by which to demonstrate this because they are so artificial P =  PM.w

and stupidly impractical.  However:
 

1. the reduction to these programs shows that there is "no silver bullet" for deciding the useful-code 
problem in all cases; and

2. the programs  are "tip of an iceberg" of cases that have so solidly resisted solution that PM.w

most people don't try---exceptions such as the Microsoft Terminator Project are rare.
 
This kind of reduction is one I call "Waiting for Godot" after a play by Samuel Beckett in which two 
people spend the whole time waiting for the title character but he never appears.  The real import is that 
there are a lot of "waiting for..." type problems about programs  that one would like to tell in advance P

by examining the code of .  The moral is that most of these problems, by dint of being undecidable in P
their general theoretical formulations, are practically hard to solve.  The practical problem of eliminating 
code bloat by removing never-used classes is one of them.  Without strict version control, whether 
blocks of code have become truly "orphaned" and no longer executed can become hard to tell.  
 
[The transition to Thursday's lecture came out here.]

 
For a side note, the "type" of the target problem is "Just a progarm ", not "a program and an input P

string" as with  itself.  We did not map  to ;  is not the input to .  Instead,  is ATM ⟨M, w⟩ ⟨P, w⟩ w P x

quantified existentially in the statement of the problem.  This makes sense: the code is useful so long 
as some input uses it.  The language of the problem combines two existential conditions:
 

• there exists an  such that when  is run on , ...x P x

• ...there exists a step at which  creates an object of the class C.P

 
A language defined by existential quantifiers in this way, down to "bedrock" predicates like creating a 
class object that are decidable, is generally c.e.  The kind of algorithmic technique used to show this is 
commonly called "dovetailing."  I like to picture dovetailing as occurring inside an enclosing arbitrary 
time-allowance loop.  In this case, noting that we are trying to analyze :P
 

 

 



input ⟨P, C⟩

for :t =  1, 2, 3, 4, …

   for each input  up to  (or you can say: of length up to ):x t t

      run  for  steps.  If  builds an object of class  during those steps, accept .    P x( ) t P x( ) C ⟨P, C⟩

 
This is a program  such that , which is R L R =( ) {⟨P, C⟩ : ∃x, t P x  builds a C object within t steps( )[ ( ) ]}

the language of the USEFULCLASS problem.  So this language is c.e. but undecidable.
 
II The "All-or-Nothing Switch"
 
This actually builds on the "wait-for-it" kind of reductions.  Note that  had an instance type that HPTM

specified both "an  and an input " but UsefulClass had the instance type "just a program " where M x P

the  part was quantified as "Does there exist an  such that ...?"  When there is flexibility in how x x P x( )

the " " part is treated, we can often hit a whole bunch of problems with a reduction at once.  Here are x

three (and  will make a fourth):KTM

 
NETM

Instance: A TM .M'

Question: Is ?L M'  ≠  ∅( )

 
ALLTM

Instance: A TM .M'

Question: Is ?L M'  =  𝛴( ) *

 
EpsTM

Instance: A TM .M'

Question: Does  accept ?M' 𝜖

 
In the first problem, it might seem more natural to phrase the question as "is ?" but that L M  =  ∅( )

would make the language of the problem become , which is called .  The ⟨M⟩ :  L M  =  ∅{ ( ) } ETM

reason we need to use  is that when doing mapping reductions, we NE  =  TM {⟨M⟩ :  L M  ≠  ∅( ) }

need to make "yes" cases of the source problem line up with "yes" answers to the target problem.  We 
will see that usually it is impossible to do it the other way, switching "yes" and "no".  The language 

 as-defined is c.e.  Here is the reduction:NETM

 
Here  is a Turing machine, but we could get it by using the same call to the Turing Kit and then M'

converting the resulting Java code to a Turing machine as proved in the Friday 10/2 lecture.  Or we can 
just build  by having   (which depends on  and ) first write the fixed string  on its tape M' M' M w ⟨M, w⟩

next to  (or even in place of  in this case) and then go to the start state of a universal TM  which is x x U

made to run on .  Either way,  is computable---since  is fixed and the initial "write " ⟨M, w⟩ f U ⟨M, w⟩

step takes time proportional to the length of  to code, the latter more clearly makes  linear-time ⟨M, w⟩ f

computable.  So this construction is computable.

 

 



 

Here is the one-shot correctness analysis for all three target problems:    
the "fuzzy box" main body of  always exits, regardless of the input ;M accepts w ⟹ M' x

                     for all inputs ,  accepts ;⟹ x M' x

                     , which also implies that  and  accepts .⟹ L M'  = 𝛴  ( ) * L M'  ≠  ∅( ) M' 𝜖

Thus,
 is in all of , , and .  Whereas,⟨M, w⟩ ∈ A  ⟹  fTM (⟨M, w⟩  =  ⟨M'⟩) ALLTM NETM EpsTM

 
the main body of  rejects or never finishes; either way, it never accepts;M doesn't accept w ⟹ M'

                                for all inputs ,  does not accept ;⟹ x M' x

                                , which also implies that  and .⟹ L M'  = ∅ ( ) L M'  ≠  𝛴( ) * 𝜖 ∉  L M'( )

Thus,
, , and  . ⟨M, w⟩ ∉ A  ⟹  fTM (⟨M, w⟩  ∉ E) TM f(⟨M, w⟩  ∉ ALL) TM f(⟨M, w⟩  ∉ Eps) TM

 
We also get .  So this shows  too.⟨M, w⟩ ∈ A  ⟺ f ⟨M, w⟩  =  ⟨M'⟩ ∈ K  TM ( ) TM A  ≤  KTM m TM

 
So we have simultaneously shown , , and .  A  ≤  NETM m TM A  ≤  ALLTM m TM A  ≤  EpsTM m TM

Thus all three of these problems and their languages are undecidable.
 
We also have  by transitivity (or you can show it directly).  By the complements rule K  ≤  NETM m TM

for reductions, this means that .  By the Sipser naming scheme, again we haveD  ≤  ETM m TM

 
ETM

Instance: A TM .M

Question: Is ?L M  =  ∅( )

 
and the corresponding language, also called , is .  Thus  is hard for co-RE, ETM ⟨M⟩ :  L M = ∅{ ( ) } ETM

and since it belongs to co-RE (i.e., it is co-c.e., since  is c.e.), it is complete for co-RE.  The NETM

picture now is as follows (it's OK to lose the "TM" subscripts on  and  especially):K D
 

 

 

⟨M, w⟩   ↪    M' =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

accept x. qrej



 
In passing, here's a self-study question: How would you go about showing ?  Showing A  ≤  KTM m TM

 was easy, but now we have to package an arbitrary pair  into a single K  ≤  ATM m TM ⟨M, w⟩

machine  that accepts its own code if and only if  accepts .  If you think about this task M' M w

intensionally, it may seem daunting: how can we vary the code of  for all the various  strings so M' w

that  does or does not accept its own code depending on whether  gets accepted by .  How on M' w M
earth can we pack two things into one?  But if you think extensionally in terms of the correctness logic 
of a reduction, the answer might "jump off the page" at you...
 
By showing , we have not only shown that the  language is undecidable, we A  ≤  NETM m TM NETM

have shown it is not co-c.e.  But since the  language is c.e.,  could be c.e.---and indeed it is, ATM NETM

by dovetailing: Given any TM , for : try  on all inputs  for up to  steps.  If  M t =  1, 2, 3, … M x <  t t M'

is found to accept any of them within  steps, accept , else continue.   That the language (of) t ⟨M'⟩

is c.e. is simpler to see: given , just run  and accept  if and when  accepts .  Eps  TM M' M' 𝜖( ) ⟨M'⟩ M' 𝜖

But how about the language of ?  Hmmm....ALLTM

 
 
III The "Delay Switch"
 
The third useful reduction technique is something I call the "Delay Switch."  The intuition and attitude 
are the opposite of "Waiting for Godot" and the all-or-nothing switch.  This time you picture your target 
machine  or target program  as monitoring a condition that you hope doesn't happen, such as M' P

when doing security for a building.  The input  to the target machine is first read as giving a length  x t0

of time that you have to monitor the condition for.  Usually we just take , the length of the input t  =  |x|0

string  (you may always call this length  too).  If the condition doesn't happen over that time---that is, x n

if no "alarm" goes off---then you stay in a good status.  But if the alarm goes off within  steps, then t0

you "panic" and make  (or ) do something else.  Because this is a general tool, let's show an M' P
example of the construction even before we decide what problems we're reducing to and from:  
 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

D,A , KTM

𝜃 >  45∘

A

B

means A ≤  Bm
REG

ETMNETM

EpsTM

ALL ?TM



 
This flowchart is a little more complicated, but it is just as easily computed given the code of .  We've M

given  not  in order to help tell this apart from the other reductions and because of the ⟨M⟩ ⟨M, w⟩

source problem we get.  A key second difference is that all the components of  are solid boxes: M'

 always halts for any .  The logical analysis now says:M' x( ) x
 

• If  never accepts its own code, then the diamond always takes the  branch.   So every input M no

 gets accepted, and so .x L M'  =  𝛴( ) *

• If  does accept its own code, then there is a number  of steps at which the acceptance M t

occurs.  Thus for any input  of length , the simulation of  in the main body sees x n ≥  t M ⟨M⟩( )

the acceptance.  So the  branch of the diamond is taken, and the "post-alarm" action in this yes

case is to circle the wagons and reject .  This means that all but the finitely many  having x x

 get rejected, so not only is , it isn't even infinite.|x| <  t L M'  ≠  𝛴( ) *

 
What this amounts to is: .  So we have ⟨M⟩ ∈  D  ⟺  L M'  =  𝛴  ⟺  f ⟨M⟩  ∈  ALLTM ( ) * ( ) TM

shown , whereas before we showed  (and it follows thatD  ≤  ALLTM m TM A  ≤  ALLTM m TM

).  Since  is not c.e., this means we have shown that  is not c.e. either.  K  ≤  ALLTM m TM DTM ALLTM

Hence  is neither c.e. nor co-c.e.  To convey this consequence pictorially:ALLTM

 

 

 

⟨M⟩    ↪     M' =
f Simulate M ⟨M⟩( )

for up to n steps

input x

 accept x

compute n =  |x|

Did M
accept?no yes (panic!)

 reject x

(things are good)
don't halt: really panic!



 
There is an intuition which we will later turn into a theorem while proving its version for  and -  NP co NP

at the same time.  The language  has a purely negative feel: the set of  such that  does not DTM M M
accept its own code.  When we boil this down to immediately verifiable statements, we introduce a 
universal quantifier:
 

For all time steps ,  does not accept its own code in that step.t M
 

The watchword is that the  language is definable by purely universal quantification over decidable DTM

predicates.  So is the  language:ETM

 
For all inputs  and all time steps ,  does not accept  within  steps.x t M x t

 
We could combine this into just one "for all" quantifier by saying: for all pairs  ...  In any event, ⟨x, t⟩
much like having a purely existential definition is the hallmark of being c.e., haveing a purely universal 
definition makes a language co-c.e.  This is to be expected, because a negated definition of the form 
 

    flips around to become   .¬ ∃t R i, t( ) ( ) ∀t ¬R i, t( ) ( )

 
If the language  is decidable, then so is its complement, which (ignoring the issue ⟨i, t⟩ :  R i, t  holds{ ( ) }

of strings that are not valid codes of pairs) is the language of   So we get the same bedrock of ¬R i, t .( )

decidable conditions in either case.  
 
With , however, we have to combine both kinds of quantifier into one statement to define it. The ALLTM

simplest definition of " " is:L M  =  𝛴( ) *

 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 >  45∘

A

B

means A ≤  Bm

 must ALLTM

be somewhere 
in this intersec-
tion of cones.

ALL , TOTTM

REG

char

string

lang

class

number

ETM

∼ TOT EQTM



For all inputs , there exists a timestep  such that [  accepts  at step ].x t M x t
 
The square brackets are there to suggest that the predicate they enclose is a "solid box" meaning 
decidable.  Believe-it-or-else, this predicate is also named for Stephen Kleene...in a slightly different 
form which we will cover once we hit complexity theory.  For now, let us state:
 
Theorem (the proof will come when we hit NP and co-NP next week):

• A language  is c.e. if and only if it can be defined using only one or more initial existential  L ∃( )

quantifiers in front of a decidable predicate.
• A language  is co-c.e. if and only if it can be defined using only one or more initial universal  L ∀( )

quantifiers in front of a decidable predicate.
 
Now you might wonder: is there a more clever way to define the notion of " " using just one L M  =  𝛴( ) *

kind of quantifier?  The fact that  is neither c.e. nor co-c.e. says a definite no to this possibility.  ALLTM

 
As for what it means in practice, you can use the "logical feel" of a problem to pre-judge whether it is 
c.e. or co-c.e. (in which case, if asked to show the problem undecidable, the choice of problem to 
reduce from is mostly forced), or neither---in which case, it's "carte blanche"---before proving exactly 
how it is classified.  For example, consider 
 

TOT =  M :  M is total,  i. e.,  ∀x,  M x ↓ .{ ( ) }

 
It has a "for all" feel to it.  So the first intuition says it is not c.e.  That is correct, and we can prove it by 
showing  via the delay switch.  Then we can ask whether it is not co-c.e. either.  In fact, D  ≤  TOTTM m

 is highly similar to  and the same ideas as for  work to show  TOT ALLTM A  ≡  HPTM m TM

.  A similar case is , which we can reduce from  "by restriction."  ALL  ≡  TOTTM m EQTM ALLTM

 
 
Example:  Prove this is neither c.e. nor co-c.e.EQ  =  ⟨M , M ⟩ :  L M  =  L M .TM { 1 2 ( 1) ( 2)}

 
Make a special case the target: the case where , say, has .  Call that .  ThenM2 L M  =  𝛴( 2) * Mall

.  So  by the simple reduction ⟨M , M ⟩ ∈  EQ  ⟺  ⟨M ⟩ ∈  ALL1 all TM 1 TM ALL  ≤  EQTM m TM

.   Because we showed  is neither c.e. nor co-c.e., the same "45  cone f M  =  M, M( ) ( all) ALLTM
∘

logic" says that  is neither c.e. nor co-c.e.EQTM

 
Here is a trickier problem with a trickier name:
 
OnlyEpsTM

INST: A Turing machine .M'

QUES: Is ?  That is, does  accept  but no other string?L M' = 𝜖( ) { } M' 𝜖

 
Here are diagrams of reductions showing  and then .A  ≤  OnlyEpsTM m TM D  ≤  OnlyEpsTM m TM

 

 



 
For self-study, do the correctness logic on these reductions.  Also make the second one work with the 
"delay switch" idea.  It turns out that the  language is in the least  equivalence class of OnlyEps ≡ m

languages that reduce from both  and .  In particular, it is lower than  and .  K D ALLTM TOT

[Technically,  and  and  are all in the same equivalence class under Alan Turing's original OnlyEps K D

reducibility notion, called Turing reductions and written .  But Turing reductions would collapse ≤ T

the left-right dimension (which corresponds to  versus  in logic) down to a single stick, as at right ∃ ∀

below.   So I prefer to avoid them at this point.]
 

 
[We can drop the "TM" subscripts not only when the context is clear but because using Java or any 
other high-level programming language would give exactly the same classification of the analogously-
defined languages, e.g. , , , , etc.  But now we will see machines between AJava DJava KJava OnlyEpsJava
Turing machines and DFAs for which the classifications do change and the distinction between 
"decidable" and "undecidable" is almost on a knife-edge.]

 

 

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w( )

input x

accept x.

if  rejectx ≠ 𝜖

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M( )

input x

accept x.

if  acceptx = 𝜖

(only  by here)x = 𝜖 (all  by here)x ≠ 𝜖

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 >  45∘

A

B

means A ≤  Bm

 must ALLTM

be somewhere 
in this intersec-
tion of cones.

TOT

REG

ETM

OnlyEps

"Degrees of
Unsolvability"

2

1

0

(technically
defined via
≤ T)



 
 
Reductions Via Computation Traces 
 
[This parallels the second half of section 5.1 of Sipser, but emphasizes the problems that pertain to 
context-free grammars and PDAs first, rather than discuss Linear Bounded Automata (LBAs) first.  
IMHO, LBAs go more naturally as a connection to space complexity in chapter 7.]
 
We recall (from the April 8 lecture) the definition of instantaneous descriptions (IDs, also called 
configurations), which give the current state, current tape contents aside from blanks, and current 
head position(s) at any point in a computation by a Turing machine.  The starting ID on an input  x ∈ 𝛴

*

is denoted by .  For a single-tape Turing machine  with start state  this can have the simple I x0( ) M s

form  where the state is treated as a character.  If we make TMs do "good housekeeping" I x = sx0( )

when they are about to produce an output  by blanking out everything on their tape(s) except for , y y

then the computations can end in a unique final ID .  If the TM is a decider, we can suppose it I = q yf acc

outputs  for "accept" and  for "reject".  Then it has a unique accepting ID .  We also defined 1 0 I = q 1f acc

the relation  to mean the ID  can go to the ID  in a single step by .  Thus a valid accepting I ⊢  JM I J M
computation (trace) has the form
 

,I x  ⊢  I  ⊢  I  ⊢  I  ⊢  ⋯  ⊢  I  ⊢  I ⊢  I0( ) M 1 M 2 M 3 M M t-2 M t-1 M f

 
and a valid computation that halts and rejects can be defined analogously with  as the last I  =  q 0rej rej

ID .  Then  is the number of steps---that is, the time taken by the computation---and we generally It t

suppose this is at least  where  is the length of .  The computation trace itself can be encoded n + 1 n x
as a string
 

. =  ⟨I x , I , I , I , … , I , I , I ⟩c 0( ) 1 2 3 t-2 t-1 t

 
of length , since the IDs can expand by at most one char in each step.  There is some flexibility in O t2

representing traces, of which the funkiest is to write every odd-numbered ID in reverse, i.e., 

 (if  is even).  The key question is: =  ⟨I x , I , I , I , … , I , I , I ⟩c' 0( ) R
1 2

R
3 t-2

R
t-1 t t

 
What kinds of machines---or combinations  of machines or other formal objects---can tell whether Z
strings of this kind really represent valid computations?

 
That is, given any Turing machine , what does it take to recognize the language  of its valid M VM

computation traces?  Let's write this as a definition and observe a key set of facts:
 
Definition: For any Turing machine  (wlog. a single-tape deterministic TM),  is the language of its M VM

valid (accepting) computation traces, and  stands for the form where every odd ID is written V'M
reversed.
 

 

 

https://cse.buffalo.edu/~regan/cse396/CSE396lect040821.pdf


Theorem: .  L M = ∅ ⟺  V = ∅ ⟺  V' = ∅( ) M M ☒
 
Note that even if  is not total---indeed even if  is c.e. but undecidable so that  cannot be total--M L M( ) M

-the language  can be decidable.  This is because you are not just given  but an entire string VM x

, and you just need to determine by looking entirely within the w = ⟨I x , I , I , I , … , I , I , I ⟩0( ) 1 2 3 t-2 t-1 t

bounds of  itself whether it is valid.  This means checking thatw
 

I  ⊢  Ik-1 M k

 
for all , .  This relation is decidable by checking that the action of some instruction k 1 ≤ k ≤ t

 in the code of  that is applicable in  (for instance on a single-tape TM, the ID could q, c / d, D, r( ) M Ik-1

be  for some strings  and ) produces the ID .  This is analogous to saying that we uqcv u, v ∈ 𝛤* c ∈ 𝛤 Ik
can "deduce"  from .  This is the machine analogue of checking a formal logical proof (the way Ik Ik-1

you may have done in CSE191), but in some ways it's easier:
 

1. A line  in a formal mathematical proof might depend on multiple lines  that could be k i, j <  k

anywhere in the preceding steps.  Whereas, in a computation , the dependence is only on the c
previous step.

2. Or line  in the proof could be an axiom standing by itself.  In  this only happens at the start.k c
3. Although technically the only logical rule needed other than introducing an axiom is modus 

ponens, the details for instantiating an infinite axiom schema can be pretty hairy---indeed, the 
induction rule is often "hidden" that way.  With computations , no such shenanigans!c

 
So we should be interested in, what are the simplest kinds of machines that can check computation 
traces, or formalisms that can represent valid traces (or invalid ones)?  The action we need to check in 
any pair  (?) is local to just a few chars in one part of  and .  Most of the task is I  ⊢  Ik-1 k Ik-1 Ik
checking that the rest of the IDs is identical, which is much like deciding the "Double Word" language 

.  ww : w ∈ 𝛴*

 
Indeed, the task over the whole trace is like an iterated form of the "Double Word" language---except 
that in the case where odd-numbered IDs are reversed it is like iterated palindrome checking.  Let's 
visualize the latter in a case where  and the first three instructions executed by a single-x = 011001

tape TM  are , , and .  ThenM s, 0 / 0, R, p( ) p, 1 / 0, R, q( ) q, 1 / 1, L, r( )

 
= ⟨s011001, 0p11001, 00q1001, 0r01001, … ⟩c

and

= ⟨s011001, 10011p0, 00q1001, 10010r0, … ⟩c'
 

Suppose we tried to make a DPDA  verify that  is valid.   can push the first ID  onto its P1 c' P1 s011001

stack and check it against the second ID conveniently because it is in reversed form as .  I = 10011p0R
1

The comma between them acts as a marker enabling the palindrome check to be started 

 

 



deterministically.  All the instructions of  are hard-coded into the states of  in a way that it can tell M P1

that the local change from  to  (or rather,  in reverse) is legal.  But by the end of  its stack is s0 0p p0 IR1
empty, so it cannot right away check  against .  It can, however, start pushing  in order to check IR1 I2 I2

against . The upshot is that we need a second DPDA  to skip over  and check  against , IR3 P2 I x0( ) IR1 I2

 against , and so on.  To make a long story of details short:IR3 I4

 
Lemma: For any Turing machine ,  equals the intersection of two DCFLs.  Moreover, there is a M V'M
computable mapping  such that  giving DPDAs  and  such that h h ⟨M⟩  =  ⟨P , P ⟩( ) 1 2 P1 P2

.  V'  =  L P  ∩  L PM ( 1) ( 2)

 
What does the mapping  do?  It sets up .  Thus h L M = ∅ ⟺  V' = ∅ ⟺  L P  ∩  L P = ∅( ) M ( 1) ( 2)

it mapping-reduces  to the problemETM

 
:E∩ DPDA

INST: Two DPDAs .P , P1 2

QUES: Is L P ∩ L P = ∅?( 1) ( 2)

 
Theorem:  and the analogously-defined problems  and  and , are E∩ DPDA E∩ DCFL E∩ NPDA E∩ CFL

all undecidable---indeed their languages are not c.e.---because  mapping-reduces to each of them. ETM

 In particular, this means that although the emptiness problem for one CFL is decidable, whether the 
intersection of two CFLs is empty is undecidable.
 
How about the complement of , or even the complement of  without reversing IDs?  Here, V'M VM

basically, a string  belongs to  if and only if either:w =  ⟨I x , I , I , I , … , I , I , I ⟩0( ) 1 2 3 t-2 t-1 t V
M

 
• it doesn't have the correct form as a sequence of IDs, or
• there is a screwup  for some : no legal instruction can execute the change, or some I  ⊬  Ik-1 k k

other character mismatch.
 
The first fault can always be detected on the fly---that's another reason we can often ignore the issue of 
"invalid codes" and assume a given string  has the right "angle-bracket" format.  The main point is w

that if the second happens, it is enough that it jappens for just one .  Hence a nondeterministic PDA  k N

can guess which  and then verify that there is a screwup.  (If a branch of  guesses the wrong , k N j

some other branch will guess the right  and accept; or if there is no screwup or other fault, all k
branches will correctly reject.)  The ability of a PDA to detect a mismatch is related to the reason the 
complement of the double-word language is a CFL.  Thus we conclude:
 
[The "jappens" above is an on-purpose typo, to illustrate a one-character screwup in lecture.]

 

Lemma: For any Turing machine ,  and  are both CFLs.  Moreover, there is a computable M VM V'M

mapping  such that  giving a CFG  such that , and likewise a mapping h h ⟨M⟩  =  ⟨G⟩( ) G L G =( ) V
M

 

 



 such that .  h' ⟨M⟩  =  ⟨G'⟩( ) L G' = '( ) VM ☒
 
 
This finally brings us to the proof of a long-promised fact:  
 
Theorem: The  problem is undecidable.ALLCFG

 

Proof: , where  is given ⟨M⟩ ∈ E  ≡ L M = ∅ ⟺  V = ∅ ⟺  = ∅ ⟺  L G = 𝛴TM ( ) M L G( ) ( ) * G

by the computable mapping  .  h ⟨M⟩( ) ☒
 
In fact, this is part of a "Meta-Theorem":
 
General Theorem: For any type of machine or "machine combo"  that can verify computation traces, Z

the  problem ("emptiness problem for -machines") is undecidable.  If the combo represents "broken EZ Z

traces" instead, then  is undecidable.  ALLZ

 
The main instance of  defined and proved in the text is a kind of machine called a Linear Bounded Z
Automaton (LBA).  This is defined as a Turing machine (nondeterministic or deterministic, which we 
can specify as NLBA or DLBA) that on any input  uses only the cells initially occupied by  (plus x x

optionally the blanks to the left and right of , or we can initialize with endmarkers  or  instead). x ∧ x$ ⟨x⟩
 We will talk about LBAs next time anyway.
 
[actually, "next time" will be the continuation of this lecture, attacca as they say in music...]

 

 


