
CSE396 Lecture Thu. 4/29: Degrees of Undecidability

This lecture will conclude the coverage of Chapter 5, mainly skipping section 5.2. To repeat some of
Tuesday before we pick up in the middle of the first "reduction design pattern":

Three Design Patterns For Reductions

The motivation is similar to that in general code: the ideas of reductions are often reusable.

I. "Wait For It"

Long ago, certainly before Hamilton, I used to call the first one "Waiting For Godot" after the Samuel
Beckett play in which (spoiler alert---wait, giving a spoiler alert for that play is an ultimate existential
absurdity) ... When we first had the Turing Kit and Java was new and intimations of the "Internet of
Things" started to buzz, I called this the generic reduction to the "Brew Coffee" problem: if you switch
on your Java-enabled coffee maker , will it brew coffee? You see, might ask Alexa to invoke the M' M'

Turing Kit on a given , and brew your coffee only if and when accepts . This year, with the ⟨M, w⟩ M w

Turing note, I considered joking about the "ATM Problem": if you put your card in and try to £50

withdraw , will it give you a Turing or a background check that never halts? But let's do it with a £50

problem that is actually highly relevant and attempted in practice when trying to cut down "code bloat"
by removing unused classes from object-oriented code.

USEFULCLASS

Instance: A Java program and a class defined in the code of .P C P

Question: Is there an input such that creates an object of class ?x P x() C

We mapping-reduce to the language of this decision problem. We need to compute ATM

 such that:f ⟨M, w⟩ = P()

• accepts for some , executes an instruction like C c = new C();M w ⟹ x P x()

• does not accept for all , never executes any statement involving .M w ⟹ x P x () C

I like to picture as dropping and into a flowchart for :f M w P

⟨M, w⟩ ↪ P =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

execute C c = new C();

w/o using class C

A key fine point in the correctness logic is that the class C does not appear anywhere else in the code
of . The main body of can be entirely a call to the Turing Kit program with and pre-packaged. P P M w

This body does not use any classes besides those in the Turing Kit itself. Even if , whereupon M w ↑()

 never halts either, it remains true that the class C is never used---so that removing it would not P

change the behavior of , not on any input . P x

Building the program is straightforward given any and : just fix and to be the arguments in P M w M w
the call to the Turing Kit's main simulation routine and append the statement shown in the diagram after
the place in the Turing Kit's own java code where it shows the String accepted dialog box. Thus
the code mapping itself is computable, indeed, easily linear-time computable.f

The conclusion is that the problem of detecting (never-)used classes is undecidable. It may seem that
programs are irrelevant ones by which to demonstrate this because they are so artificial P = PM.w

and stupidly impractical. However:

1. the reduction to these programs shows that there is "no silver bullet" for deciding the useful-code
problem in all cases; and

2. the programs are "tip of an iceberg" of cases that have so solidly resisted solution that PM.w

most people don't try---exceptions such as the Microsoft Terminator Project are rare.

This kind of reduction is one I call "Waiting for Godot" after a play by Samuel Beckett in which two
people spend the whole time waiting for the title character but he never appears. The real import is that
there are a lot of "waiting for..." type problems about programs that one would like to tell in advance P

by examining the code of . The moral is that most of these problems, by dint of being undecidable in P
their general theoretical formulations, are practically hard to solve. The practical problem of eliminating
code bloat by removing never-used classes is one of them. Without strict version control, whether
blocks of code have become truly "orphaned" and no longer executed can become hard to tell.

[The transition to Thursday's lecture came out here.]

For a side note, the "type" of the target problem is "Just a progarm ", not "a program and an input P

string" as with itself. We did not map to ; is not the input to . Instead, is ATM ⟨M, w⟩ ⟨P, w⟩ w P x

quantified existentially in the statement of the problem. This makes sense: the code is useful so long
as some input uses it. The language of the problem combines two existential conditions:

• there exists an such that when is run on , ...x P x

• ...there exists a step at which creates an object of the class C.P

A language defined by existential quantifiers in this way, down to "bedrock" predicates like creating a
class object that are decidable, is generally c.e. The kind of algorithmic technique used to show this is
commonly called "dovetailing." I like to picture dovetailing as occurring inside an enclosing arbitrary
time-allowance loop. In this case, noting that we are trying to analyze :P

input ⟨P, C⟩

for :t = 1, 2, 3, 4, …

 for each input up to (or you can say: of length up to):x t t

 run for steps. If builds an object of class during those steps, accept . P x() t P x() C ⟨P, C⟩

This is a program such that , which is R L R =() {⟨P, C⟩ : ∃x, t P x builds a C object within t steps()[()]}

the language of the USEFULCLASS problem. So this language is c.e. but undecidable.

II The "All-or-Nothing Switch"

This actually builds on the "wait-for-it" kind of reductions. Note that had an instance type that HPTM

specified both "an and an input " but UsefulClass had the instance type "just a program " where M x P

the part was quantified as "Does there exist an such that ...?" When there is flexibility in how x x P x()

the " " part is treated, we can often hit a whole bunch of problems with a reduction at once. Here are x

three (and will make a fourth):KTM

NETM

Instance: A TM .M'

Question: Is ?L M' ≠ ∅()

ALLTM

Instance: A TM .M'

Question: Is ?L M' = 𝛴() *

EpsTM

Instance: A TM .M'

Question: Does accept ?M' 𝜖

In the first problem, it might seem more natural to phrase the question as "is ?" but that L M = ∅()

would make the language of the problem become , which is called . The ⟨M⟩ : L M = ∅{ () } ETM

reason we need to use is that when doing mapping reductions, we NE = TM {⟨M⟩ : L M ≠ ∅() }

need to make "yes" cases of the source problem line up with "yes" answers to the target problem. We
will see that usually it is impossible to do it the other way, switching "yes" and "no". The language

 as-defined is c.e. Here is the reduction:NETM

Here is a Turing machine, but we could get it by using the same call to the Turing Kit and then M'

converting the resulting Java code to a Turing machine as proved in the Friday 10/2 lecture. Or we can
just build by having (which depends on and) first write the fixed string on its tape M' M' M w ⟨M, w⟩

next to (or even in place of in this case) and then go to the start state of a universal TM which is x x U

made to run on . Either way, is computable---since is fixed and the initial "write " ⟨M, w⟩ f U ⟨M, w⟩

step takes time proportional to the length of to code, the latter more clearly makes linear-time ⟨M, w⟩ f

computable. So this construction is computable.

Here is the one-shot correctness analysis for all three target problems:
the "fuzzy box" main body of always exits, regardless of the input ;M accepts w ⟹ M' x

 for all inputs , accepts ;⟹ x M' x

 , which also implies that and accepts .⟹ L M' = 𝛴 () * L M' ≠ ∅() M' 𝜖

Thus,
 is in all of , , and . Whereas,⟨M, w⟩ ∈ A ⟹ fTM (⟨M, w⟩ = ⟨M'⟩) ALLTM NETM EpsTM

the main body of rejects or never finishes; either way, it never accepts;M doesn't accept w ⟹ M'

 for all inputs , does not accept ;⟹ x M' x

 , which also implies that and .⟹ L M' = ∅ () L M' ≠ 𝛴() * 𝜖 ∉ L M'()

Thus,
, , and . ⟨M, w⟩ ∉ A ⟹ fTM (⟨M, w⟩ ∉ E) TM f(⟨M, w⟩ ∉ ALL) TM f(⟨M, w⟩ ∉ Eps) TM

We also get . So this shows too.⟨M, w⟩ ∈ A ⟺ f ⟨M, w⟩ = ⟨M'⟩ ∈ K TM () TM A ≤ KTM m TM

So we have simultaneously shown , , and . A ≤ NETM m TM A ≤ ALLTM m TM A ≤ EpsTM m TM

Thus all three of these problems and their languages are undecidable.

We also have by transitivity (or you can show it directly). By the complements rule K ≤ NETM m TM

for reductions, this means that . By the Sipser naming scheme, again we haveD ≤ ETM m TM

ETM

Instance: A TM .M

Question: Is ?L M = ∅()

and the corresponding language, also called , is . Thus is hard for co-RE, ETM ⟨M⟩ : L M = ∅{ () } ETM

and since it belongs to co-RE (i.e., it is co-c.e., since is c.e.), it is complete for co-RE. The NETM

picture now is as follows (it's OK to lose the "TM" subscripts on and especially):K D

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

accept x. qrej

In passing, here's a self-study question: How would you go about showing ? Showing A ≤ KTM m TM

 was easy, but now we have to package an arbitrary pair into a single K ≤ ATM m TM ⟨M, w⟩

machine that accepts its own code if and only if accepts . If you think about this task M' M w

intensionally, it may seem daunting: how can we vary the code of for all the various strings so M' w

that does or does not accept its own code depending on whether gets accepted by . How on M' w M
earth can we pack two things into one? But if you think extensionally in terms of the correctness logic
of a reduction, the answer might "jump off the page" at you...

By showing , we have not only shown that the language is undecidable, we A ≤ NETM m TM NETM

have shown it is not co-c.e. But since the language is c.e., could be c.e.---and indeed it is, ATM NETM

by dovetailing: Given any TM , for : try on all inputs for up to steps. If M t = 1, 2, 3, … M x < t t M'

is found to accept any of them within steps, accept , else continue. That the language (of) t ⟨M'⟩

is c.e. is simpler to see: given , just run and accept if and when accepts . Eps TM M' M' 𝜖() ⟨M'⟩ M' 𝜖

But how about the language of ? Hmmm....ALLTM

III The "Delay Switch"

The third useful reduction technique is something I call the "Delay Switch." The intuition and attitude
are the opposite of "Waiting for Godot" and the all-or-nothing switch. This time you picture your target
machine or target program as monitoring a condition that you hope doesn't happen, such as M' P

when doing security for a building. The input to the target machine is first read as giving a length x t0

of time that you have to monitor the condition for. Usually we just take , the length of the input t = |x|0

string (you may always call this length too). If the condition doesn't happen over that time---that is, x n

if no "alarm" goes off---then you stay in a good status. But if the alarm goes off within steps, then t0

you "panic" and make (or) do something else. Because this is a general tool, let's show an M' P
example of the construction even before we decide what problems we're reducing to and from:

REC

RE co-RE

neither c.e. nor co-c.e.

D,A , KTM

𝜃 > 45∘

A

B

means A ≤ Bm
REG

ETMNETM

EpsTM

ALL ?TM

This flowchart is a little more complicated, but it is just as easily computed given the code of . We've M

given not in order to help tell this apart from the other reductions and because of the ⟨M⟩ ⟨M, w⟩

source problem we get. A key second difference is that all the components of are solid boxes: M'

 always halts for any . The logical analysis now says:M' x() x

• If never accepts its own code, then the diamond always takes the branch. So every input M no

 gets accepted, and so .x L M' = 𝛴() *

• If does accept its own code, then there is a number of steps at which the acceptance M t

occurs. Thus for any input of length , the simulation of in the main body sees x n ≥ t M ⟨M⟩()

the acceptance. So the branch of the diamond is taken, and the "post-alarm" action in this yes

case is to circle the wagons and reject . This means that all but the finitely many having x x

 get rejected, so not only is , it isn't even infinite.|x| < t L M' ≠ 𝛴() *

What this amounts to is: . So we have ⟨M⟩ ∈ D ⟺ L M' = 𝛴 ⟺ f ⟨M⟩ ∈ ALLTM () * () TM

shown , whereas before we showed (and it follows thatD ≤ ALLTM m TM A ≤ ALLTM m TM

). Since is not c.e., this means we have shown that is not c.e. either. K ≤ ALLTM m TM DTM ALLTM

Hence is neither c.e. nor co-c.e. To convey this consequence pictorially:ALLTM

⟨M⟩ ↪ M' =
f Simulate M ⟨M⟩()

for up to n steps

input x

 accept x

compute n = |x|

Did M
accept?no yes (panic!)

 reject x

(things are good)
don't halt: really panic!

There is an intuition which we will later turn into a theorem while proving its version for and - NP co NP

at the same time. The language has a purely negative feel: the set of such that does not DTM M M
accept its own code. When we boil this down to immediately verifiable statements, we introduce a
universal quantifier:

For all time steps , does not accept its own code in that step.t M

The watchword is that the language is definable by purely universal quantification over decidable DTM

predicates. So is the language:ETM

For all inputs and all time steps , does not accept within steps.x t M x t

We could combine this into just one "for all" quantifier by saying: for all pairs ... In any event, ⟨x, t⟩
much like having a purely existential definition is the hallmark of being c.e., haveing a purely universal
definition makes a language co-c.e. This is to be expected, because a negated definition of the form

 flips around to become .¬ ∃t R i, t() () ∀t ¬R i, t() ()

If the language is decidable, then so is its complement, which (ignoring the issue ⟨i, t⟩ : R i, t holds{ () }

of strings that are not valid codes of pairs) is the language of So we get the same bedrock of ¬R i, t .()

decidable conditions in either case.

With , however, we have to combine both kinds of quantifier into one statement to define it. The ALLTM

simplest definition of " " is:L M = 𝛴() *

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 > 45∘

A

B

means A ≤ Bm

 must ALLTM

be somewhere
in this intersec-
tion of cones.

ALL , TOTTM

REG

char

string

lang

class

number

ETM

∼ TOT EQTM

For all inputs , there exists a timestep such that [accepts at step].x t M x t

The square brackets are there to suggest that the predicate they enclose is a "solid box" meaning
decidable. Believe-it-or-else, this predicate is also named for Stephen Kleene...in a slightly different
form which we will cover once we hit complexity theory. For now, let us state:

Theorem (the proof will come when we hit NP and co-NP next week):

• A language is c.e. if and only if it can be defined using only one or more initial existential L ∃()

quantifiers in front of a decidable predicate.
• A language is co-c.e. if and only if it can be defined using only one or more initial universal L ∀()

quantifiers in front of a decidable predicate.

Now you might wonder: is there a more clever way to define the notion of " " using just one L M = 𝛴() *

kind of quantifier? The fact that is neither c.e. nor co-c.e. says a definite no to this possibility. ALLTM

As for what it means in practice, you can use the "logical feel" of a problem to pre-judge whether it is
c.e. or co-c.e. (in which case, if asked to show the problem undecidable, the choice of problem to
reduce from is mostly forced), or neither---in which case, it's "carte blanche"---before proving exactly
how it is classified. For example, consider

TOT = M : M is total, i. e., ∀x, M x ↓ .{ () }

It has a "for all" feel to it. So the first intuition says it is not c.e. That is correct, and we can prove it by
showing via the delay switch. Then we can ask whether it is not co-c.e. either. In fact, D ≤ TOTTM m

 is highly similar to and the same ideas as for work to show TOT ALLTM A ≡ HPTM m TM

. A similar case is , which we can reduce from "by restriction." ALL ≡ TOTTM m EQTM ALLTM

Example: Prove this is neither c.e. nor co-c.e.EQ = ⟨M , M ⟩ : L M = L M .TM { 1 2 (1) (2)}

Make a special case the target: the case where , say, has . Call that . ThenM2 L M = 𝛴(2) * Mall

. So by the simple reduction ⟨M , M ⟩ ∈ EQ ⟺ ⟨M ⟩ ∈ ALL1 all TM 1 TM ALL ≤ EQTM m TM

. Because we showed is neither c.e. nor co-c.e., the same "45 cone f M = M, M() (all) ALLTM
∘

logic" says that is neither c.e. nor co-c.e.EQTM

Here is a trickier problem with a trickier name:

OnlyEpsTM

INST: A Turing machine .M'

QUES: Is ? That is, does accept but no other string?L M' = 𝜖() { } M' 𝜖

Here are diagrams of reductions showing and then .A ≤ OnlyEpsTM m TM D ≤ OnlyEpsTM m TM

For self-study, do the correctness logic on these reductions. Also make the second one work with the
"delay switch" idea. It turns out that the language is in the least equivalence class of OnlyEps ≡ m

languages that reduce from both and . In particular, it is lower than and . K D ALLTM TOT

[Technically, and and are all in the same equivalence class under Alan Turing's original OnlyEps K D

reducibility notion, called Turing reductions and written . But Turing reductions would collapse ≤ T

the left-right dimension (which corresponds to versus in logic) down to a single stick, as at right ∃ ∀

below. So I prefer to avoid them at this point.]

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any
other high-level programming language would give exactly the same classification of the analogously-
defined languages, e.g. , , , , etc. But now we will see machines between AJava DJava KJava OnlyEpsJava
Turing machines and DFAs for which the classifications do change and the distinction between
"decidable" and "undecidable" is almost on a knife-edge.]

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x

accept x.

if rejectx ≠ 𝜖

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M()

input x

accept x.

if acceptx = 𝜖

(only by here)x = 𝜖 (all by here)x ≠ 𝜖

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 > 45∘

A

B

means A ≤ Bm

 must ALLTM

be somewhere
in this intersec-
tion of cones.

TOT

REG

ETM

OnlyEps

"Degrees of
Unsolvability"

2

1

0

(technically
defined via
≤ T)

Reductions Via Computation Traces

[This parallels the second half of section 5.1 of Sipser, but emphasizes the problems that pertain to
context-free grammars and PDAs first, rather than discuss Linear Bounded Automata (LBAs) first.
IMHO, LBAs go more naturally as a connection to space complexity in chapter 7.]

We recall (from the April 8 lecture) the definition of instantaneous descriptions (IDs, also called
configurations), which give the current state, current tape contents aside from blanks, and current
head position(s) at any point in a computation by a Turing machine. The starting ID on an input x ∈ 𝛴

*

is denoted by . For a single-tape Turing machine with start state this can have the simple I x0() M s

form where the state is treated as a character. If we make TMs do "good housekeeping" I x = sx0()

when they are about to produce an output by blanking out everything on their tape(s) except for , y y

then the computations can end in a unique final ID . If the TM is a decider, we can suppose it I = q yf acc

outputs for "accept" and for "reject". Then it has a unique accepting ID . We also defined 1 0 I = q 1f acc

the relation to mean the ID can go to the ID in a single step by . Thus a valid accepting I ⊢ JM I J M
computation (trace) has the form

,I x ⊢ I ⊢ I ⊢ I ⊢ ⋯ ⊢ I ⊢ I ⊢ I0() M 1 M 2 M 3 M M t-2 M t-1 M f

and a valid computation that halts and rejects can be defined analogously with as the last I = q 0rej rej

ID . Then is the number of steps---that is, the time taken by the computation---and we generally It t

suppose this is at least where is the length of . The computation trace itself can be encoded n + 1 n x
as a string

. = ⟨I x , I , I , I , … , I , I , I ⟩c 0() 1 2 3 t-2 t-1 t

of length , since the IDs can expand by at most one char in each step. There is some flexibility in O t2

representing traces, of which the funkiest is to write every odd-numbered ID in reverse, i.e.,

 (if is even). The key question is: = ⟨I x , I , I , I , … , I , I , I ⟩c' 0() R
1 2

R
3 t-2

R
t-1 t t

What kinds of machines---or combinations of machines or other formal objects---can tell whether Z
strings of this kind really represent valid computations?

That is, given any Turing machine , what does it take to recognize the language of its valid M VM

computation traces? Let's write this as a definition and observe a key set of facts:

Definition: For any Turing machine (wlog. a single-tape deterministic TM), is the language of its M VM

valid (accepting) computation traces, and stands for the form where every odd ID is written V'M
reversed.

https://cse.buffalo.edu/~regan/cse396/CSE396lect040821.pdf

Theorem: . L M = ∅ ⟺ V = ∅ ⟺ V' = ∅() M M ☒

Note that even if is not total---indeed even if is c.e. but undecidable so that cannot be total--M L M() M

-the language can be decidable. This is because you are not just given but an entire string VM x

, and you just need to determine by looking entirely within the w = ⟨I x , I , I , I , … , I , I , I ⟩0() 1 2 3 t-2 t-1 t

bounds of itself whether it is valid. This means checking thatw

I ⊢ Ik-1 M k

for all , . This relation is decidable by checking that the action of some instruction k 1 ≤ k ≤ t

 in the code of that is applicable in (for instance on a single-tape TM, the ID could q, c / d, D, r() M Ik-1

be for some strings and) produces the ID . This is analogous to saying that we uqcv u, v ∈ 𝛤* c ∈ 𝛤 Ik
can "deduce" from . This is the machine analogue of checking a formal logical proof (the way Ik Ik-1

you may have done in CSE191), but in some ways it's easier:

1. A line in a formal mathematical proof might depend on multiple lines that could be k i, j < k

anywhere in the preceding steps. Whereas, in a computation , the dependence is only on the c
previous step.

2. Or line in the proof could be an axiom standing by itself. In this only happens at the start.k c
3. Although technically the only logical rule needed other than introducing an axiom is modus

ponens, the details for instantiating an infinite axiom schema can be pretty hairy---indeed, the
induction rule is often "hidden" that way. With computations , no such shenanigans!c

So we should be interested in, what are the simplest kinds of machines that can check computation
traces, or formalisms that can represent valid traces (or invalid ones)? The action we need to check in
any pair (?) is local to just a few chars in one part of and . Most of the task is I ⊢ Ik-1 k Ik-1 Ik
checking that the rest of the IDs is identical, which is much like deciding the "Double Word" language

. ww : w ∈ 𝛴*

Indeed, the task over the whole trace is like an iterated form of the "Double Word" language---except
that in the case where odd-numbered IDs are reversed it is like iterated palindrome checking. Let's
visualize the latter in a case where and the first three instructions executed by a single-x = 011001

tape TM are , , and . ThenM s, 0 / 0, R, p() p, 1 / 0, R, q() q, 1 / 1, L, r()

= ⟨s011001, 0p11001, 00q1001, 0r01001, … ⟩c

and

= ⟨s011001, 10011p0, 00q1001, 10010r0, … ⟩c'

Suppose we tried to make a DPDA verify that is valid. can push the first ID onto its P1 c' P1 s011001

stack and check it against the second ID conveniently because it is in reversed form as . I = 10011p0R
1

The comma between them acts as a marker enabling the palindrome check to be started

deterministically. All the instructions of are hard-coded into the states of in a way that it can tell M P1

that the local change from to (or rather, in reverse) is legal. But by the end of its stack is s0 0p p0 IR1
empty, so it cannot right away check against . It can, however, start pushing in order to check IR1 I2 I2

against . The upshot is that we need a second DPDA to skip over and check against , IR3 P2 I x0() IR1 I2

 against , and so on. To make a long story of details short:IR3 I4

Lemma: For any Turing machine , equals the intersection of two DCFLs. Moreover, there is a M V'M
computable mapping such that giving DPDAs and such that h h ⟨M⟩ = ⟨P , P ⟩() 1 2 P1 P2

. V' = L P ∩ L PM (1) (2)

What does the mapping do? It sets up . Thus h L M = ∅ ⟺ V' = ∅ ⟺ L P ∩ L P = ∅() M (1) (2)

it mapping-reduces to the problemETM

:E∩ DPDA

INST: Two DPDAs .P , P1 2

QUES: Is L P ∩ L P = ∅?(1) (2)

Theorem: and the analogously-defined problems and and , are E∩ DPDA E∩ DCFL E∩ NPDA E∩ CFL

all undecidable---indeed their languages are not c.e.---because mapping-reduces to each of them. ETM

 In particular, this means that although the emptiness problem for one CFL is decidable, whether the
intersection of two CFLs is empty is undecidable.

How about the complement of , or even the complement of without reversing IDs? Here, V'M VM

basically, a string belongs to if and only if either:w = ⟨I x , I , I , I , … , I , I , I ⟩0() 1 2 3 t-2 t-1 t V
M

• it doesn't have the correct form as a sequence of IDs, or
• there is a screwup for some : no legal instruction can execute the change, or some I ⊬ Ik-1 k k

other character mismatch.

The first fault can always be detected on the fly---that's another reason we can often ignore the issue of
"invalid codes" and assume a given string has the right "angle-bracket" format. The main point is w

that if the second happens, it is enough that it jappens for just one . Hence a nondeterministic PDA k N

can guess which and then verify that there is a screwup. (If a branch of guesses the wrong , k N j

some other branch will guess the right and accept; or if there is no screwup or other fault, all k
branches will correctly reject.) The ability of a PDA to detect a mismatch is related to the reason the
complement of the double-word language is a CFL. Thus we conclude:

[The "jappens" above is an on-purpose typo, to illustrate a one-character screwup in lecture.]

Lemma: For any Turing machine , and are both CFLs. Moreover, there is a computable M VM V'M

mapping such that giving a CFG such that , and likewise a mapping h h ⟨M⟩ = ⟨G⟩() G L G =() V
M

 such that . h' ⟨M⟩ = ⟨G'⟩() L G' = '() VM ☒

This finally brings us to the proof of a long-promised fact:

Theorem: The problem is undecidable.ALLCFG

Proof: , where is given ⟨M⟩ ∈ E ≡ L M = ∅ ⟺ V = ∅ ⟺ = ∅ ⟺ L G = 𝛴TM () M L G() () * G

by the computable mapping . h ⟨M⟩() ☒

In fact, this is part of a "Meta-Theorem":

General Theorem: For any type of machine or "machine combo" that can verify computation traces, Z

the problem ("emptiness problem for -machines") is undecidable. If the combo represents "broken EZ Z

traces" instead, then is undecidable. ALLZ

The main instance of defined and proved in the text is a kind of machine called a Linear Bounded Z
Automaton (LBA). This is defined as a Turing machine (nondeterministic or deterministic, which we
can specify as NLBA or DLBA) that on any input uses only the cells initially occupied by (plus x x

optionally the blanks to the left and right of , or we can initialize with endmarkers or instead). x ∧ x$ ⟨x⟩
 We will talk about LBAs next time anyway.

[actually, "next time" will be the continuation of this lecture, attacca as they say in music...]

