Defn: Given two languages $A, B \subseteq \Sigma^*$, say that $A \overset{\text{many-one}}{\leq_m} B$ if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A \iff f(x) \in B$. (*)

Proposition: $A \leq_m B$ if and only if $\bar{A} \leq_m B$.

because $x \in A \iff f(x) \in B$ if (*) holds.

Proposition: If $A \leq_m B$ via f and $B \leq_m C$ via a function g, then $A \leq_m C$ via the function $g \circ f$.

Lemma: Suppose $A \leq_m B$. Then:

(a) If B is decidable, then so is A.
(b) If B is recognizable, then so is A.
(c) If B is co-c.e. then so is A.

Proof: (a) By B being decidable, we can take a total TM M_B s.t. $L(M_B) = B$. Goal: build a total TM M_A such that $L(M_A) = A$.

Then M_A is total and M_A accepts $x \iff M_B$ accepts $f(x)$. So M_A accepts $x \iff x \in A$ and M_A is total, so A is decidable.
6) Suppose B is merely c.e. Then we can take M_B st. $L(M_B) = B$, but M_B might not be total. Can diagram using "fuzzy box". Then M_A might not be total either, but we still have $M_A \text{ accept } x \Rightarrow M_B \text{ accept } y \Rightarrow \text{yes } \Rightarrow x \in A$. So $L(M_A) = A$, so A is recognizable/c.e./re./etc.

5) Suppose B is c-o-c.e. This means \overline{B} is c.e. By $A \leq_m B$, we also have $A \leq_m \overline{B}$. By part (b), \overline{B} is c-e. Thus A is co-c.e.

Theorem: If $A \leq_m B$ where B is c.e. and $A \leq_m C$ where C is co-c.e. then A is decidable.

Corollary: If A is c-e. and co-c-e. then A is decidable.

Proof of this corollary: Take $B = A$, $\overline{B} = A$ and use identity reductions.

Proof: Take TMs M_B st. $L(M_B) = B$ and M_C st. $L(M_C) = \overline{C}$, and take functions f, g st. $A \leq_m B$ via f and $A \leq_m C$ via g. Build a TM M_A that does step-by-step simulations of M_B and M_C in tandem. Then $M_A \leq_m B$ because $x \in A \Rightarrow \exists y \in B \Rightarrow M_B$ will eventually accept y, while $x \in \overline{A} \Rightarrow \exists \overline{C} \Rightarrow M_C$ will eventually accept z. And $L(M_A) = A$.

\[\text{Do the next step of } M_B \text{ (if yes)} \]
\[\text{Did it accept } y \text{ in that step?} \]
\[\text{Do 1 more step of } M_C \text{ (if possible).} \]
Examples of Reductions

\[D_{\text{TM}} = \{ \langle M \rangle : \langle M \rangle \notin L(M) \} \text{ not c.e.} \]
\[K_{\text{TM}} = \{ \langle M \rangle : L(M) \notin \text{L(M)} \} \text{ c.e. but undecidable} \]
\[A_{\text{TM}} = \{ \langle M, w \rangle : M \text{ accepts } w \} \text{ ditto} \]

- \(K_{\text{TM}} \leq_m A_{\text{TM}} \) via \(f(\langle M \rangle) = \langle M, \langle M \rangle \rangle \).
- Here \(f \) is computable because it just duplicates whatever code it is given, and \(f \) is correct because \(\langle M \rangle \in K_{\text{TM}} \equiv M \text{ accepts } \langle M \rangle \).

Per the diagram, \(D_{\text{TM}} \) does not \(\leq_m \) to \(K_{\text{TM}} \), which is good because \(K_{\text{TM}} \) is c.e. so \(D_{\text{TM}} \) would be c.e., which it is not.

\(\text{NE}_{\text{TM}} \): INST: A TM M

\[\text{Guess: } L(M) \neq \emptyset ? \]

As a language, \(\text{NE}_{\text{TM}} = \{ \langle M \rangle : L(M) \neq \emptyset \} \).

\[A_{\text{TM}} \leq_m \text{NE}_{\text{TM}} \text{: We need to build a computable mapping of code } \langle M, w \rangle \rightarrow f \rightarrow M' \text{ such that } L(M') \neq \emptyset \equiv M \text{ accepts } w.\]

\(f \) is computable because we can just drop a particular \(M \) and \(W \) into the slot in our code framework for \(M' \).

\(f \) is correct because \(\langle M, w \rangle \in A_{\text{TM}} \Rightarrow \text{M accepts } w \Rightarrow \forall x, M' \text{ accepts } x \Rightarrow L(M') = \Sigma^* \Rightarrow L(M') \neq L(M) \Rightarrow (M') \notin \text{NE}_{\text{TM}} \)

whereas \(\langle M, w \rangle \notin A_{\text{TM}} \Rightarrow \forall x, M'(x) \) does not escape the reject box \(\Rightarrow L(M') = \emptyset \).

\[A_{\text{TM}} \leq_m \text{NE}_{\text{TM}}, \text{ and since } A_{\text{TM}} \text{ is undecidable, so is } \text{NE}_{\text{TM}}. \]

\[f(\langle M, w \rangle) = L(M') \in \text{NE}_{\text{TM}} \]

\[A_{\text{TM}} \leq_m \text{NE}_{\text{TM}}, \text{ and since } A_{\text{TM}} \text{ is undecidable, so is } \text{NE}_{\text{TM}}. \]

\[A_{\text{TM}} \leq_m \text{ALL}_{\text{TM}} \equiv \{ \langle M \rangle : L(M) = \Sigma^* \} \text{ so } \text{ALL}_{\text{TM}} \text{ is undecidable too.} \Rightarrow \langle M' \rangle \notin \text{ALL}_{\text{TM}} \]