D_Tm = D = \{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \} \\
\text{Complement is} \\
K_Tm = K = \{ \langle M \rangle : M \text{ does accept } \langle M \rangle \}

K is undecidable because D is undecidable. But K is c.e. because K is a specially marked subset of

A_Tm = \{ \langle M, w \rangle : M \text{ accepts } w \} \text{, Universal Turing Machine}

which is the language of the Turing Kit, or of any one.

The Ktau problem is the special case of the ATM problem.

A_Tm: INST: A TM M and an input \(w \in \Sigma^* \)

QUES: Does \(M \) accept \(w \)?

K_Tm: INST: Just M.

QUES: Does \(M \) accept \(\langle M \rangle \)?

\(\langle M \rangle \in K_Tm \text{ } \Leftrightarrow \langle M, M \rangle \in A_Tm \)

Theorem: \(A_Tm \) is c.e. but not decidable.

Goal: Get further such conclusions from observing that the function \(f(\langle M \rangle) = \langle M, M \rangle \) satisfies the relation

\(f(x) = \langle x, x \rangle \text{, } x \in K_Tm \Leftrightarrow \text{ for } \langle x \rangle \in A_Tm \)
Defn: Given any languages $A, B \subseteq \Sigma^*$, we write $A \leq_m B$ and say A maps-one-reduces to B if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A \iff f(x) \in B$.

Previous Example: $A = K_m$, $B = A_m$.

Theorem: Suppose $A \leq_m B$. Then
1. If B is decidable then A is decidable.
2. If B is c.e., then A is c.e.
3. If B is co-c.e., i.e., \overline{B} is c.e., then A is 10-c.e.

Proof:
1. Take a total TM M_a such that $L(M_a) = B$ and a total TM T computing f. View $\overline{\text{"Transducer"}}$ them as solid boxes.

Then M_A is total, and for all x:
- M_A accepts $x \iff M_B$ accepts $y = f(x) \iff y \in B \iff x \in A$

So M_A decides A.

- $L(M_B) = B$
- $x \in A \iff f(x) \in B$ since f is a reduction.

\[\text{If } \text{acc, } \text{then } \text{accept } x \text{ else reject } x \]
In (b), by B is c.e., we are only given that \(L(M_B) = \overline{B} \), not that \(M_B \) is total. We draw a "fuzzy box" for \(M_B \):

Then \(M_A \) represents executable code and for all \(x \), \(x \in A \iff \forall y : y \in B \iff M_B \) accepts \(y \iff M_A \) accepts \(x \). \(\therefore L(M_A) = A \), so A is c.e.

For (c), we have \(A \leq_m B \) and \(B \) is c.e., i.e. \(\overline{B} \) is c.e.

We claim \(\overline{A} \leq_m \overline{B} \) because \(x \in A \iff \forall y : y \in B \iff x \notin \overline{A} \iff \forall y : y \notin \overline{B} \iff x \in \overline{A} \).

Since \(\overline{B} \) is c.e., we get \(\overline{A} \) is c.e. by part (b), so \(A \) is co-c.e.

By symmetry of REC, \(A \) decidable \(\iff \overline{A} \in \text{REC} \)

Diagram also conveys Theorem 3: \(A \) is decidable \(\iff \text{REC} \cap \text{co-RE} = \text{REC} \).

\(A \leq_m B \) means the angle from \(A \) up to \(B \) is at least as steep as the diagonal walls.
Proof: Suppose \(B \) and \(\tilde{B} \) are both c.e. Then we can take TMs \(M_1, M_2 \) (not necessarily total) st \(L(M_1) = B \) and \(L(M_2) = \tilde{B} \). Build \(M_3 \) to execute the following flowchart loop:

Since \(L(M_1) \) and \(L(M_2) \) are complementary on any input \(x \), exactly one of them will eventually accept. Thus \(M_3(x) \) always exits the loop (by) then, so \(M_3 \) is total and \(L(M_3) = B \), so \(B \) is RE.

Contrapositive of Theorem 2: Suppose \(A \leq_m B \) then:

(a) If \(A \) is undecidable then \(B \) is undecidable
(b) If \(A \) is not c.e. then \(B \) is not c.e.
(c) If \(A \) is not co-c.e. then \(B \) ditto. \(A_m \leq_m \operatorname{NE}_m \)

Example: We can prove \(\operatorname{NE}_m \) is undecidable by showing goal: Build a compatible function \(f \) st. \(\langle M, w \rangle \mapsto \langle \text{form, w} \rangle \) \(f(M, w) \) will be the code of a single machine \(M' \) such that \(L(M') \neq \emptyset \implies M \) accepts \(w \). Correctness of the reduction Proof is mainly constructing \(M' \) from \(M \) and \(w \).
\((M,w) \xrightarrow{f} M'\)

We can build the code of \(M'\) given that of \(M\) and \(w\).

And for correctness:

If \(M\) accepts \(w\), then for all \(y\), \(M'\) accepts \(y\), so \(L(M') = \Sigma^*\), so \(L(M') \neq \emptyset\).

\(\therefore (M,w) \in \text{A}_{\text{TM}} \implies (M') \in \text{NE}_{\text{TM}}\).

But if \(M\) does not accept \(w\), then for all \(y\), \(M'\) never gets to accept \(y\), so \(L(M') = \emptyset\).

\(\therefore (M,w) \in \text{A}_{\text{TM}} \implies (M') \in \text{NE}_{\text{TM}}\) (by instantiation).

\(\therefore (M,w) \in \text{A}_{\text{TM}} \implies f(M,w) = (M') \in \text{NE}_{\text{TM}}\)

and \(f\) is computable, so \(\text{A}_{\text{TM}} \leq_m \text{NE}_{\text{TM}}\), and \(\text{A}_{\text{TM}}\) is undecidable, so \(\text{NE}_{\text{TM}}\) is undecidable.

Note, however, that \(\text{NE}_{\text{TM}}\) is c.e. → Thursday.