Def: Two languages A and B are mapping equal, written $A \equiv_m B$, if $A \leq_m B$ and $B \leq_m A$.

The reduction f is correct:

1. $f(a) = M$ accepts w
2. $M(w)$ goes to acc
3. $M'(w)$ goes to acc
4. $M'(w)$ goes to acc

Thus $A_{TM} \equiv_m H_{TM}$. We need to map

$\langle M, w \rangle \overset{c}{\rightarrow} \langle M', w \rangle$

$s.t. \langle M, w \rangle \in H_{TM} \iff \langle M', w \rangle \in A_{TM}$

ie. $M(w) \uparrow \iff M'(w) \text{ accepts } w$.

Thus $A_{TM} \equiv_m H_{TM}$.

Historically, both have been called "the halting problem."
We showed $K_{TM} \leq_m A_{TM}$ via $F(K_{TM}) = \langle M, M \rangle$.
Also note that M_1 accepts its own code if and only if M accepts W.

The All-Or-One "Nothing Switch" Accept X. We showed $A_{TM} \leq_m \text{NETM}$ and $A_{TM} \leq_m \text{ALL}_{TM}$.

A similar pattern causes many programming problems to be undecidable.

A Third Reduction "Delay Flip-Switch" Design Pattern. $\langle M \rangle \not\equiv_{m} M'$.

This code construction is computable. Analysis:

$\langle M \rangle \in K_{TM} \Rightarrow M$ accepts $\langle M \rangle \Rightarrow M$ accepts $\langle M \rangle$ within some number of steps.

For all x, $|x| \geq t$, M_1 sees the acceptance and hence rejects X.

$\forall x, M_1 \text{ accepts } \langle M \rangle$.

$L(M')$ is finite, so in particular $L(M') = \emptyset$. Whereas, $\langle M \rangle \in K_{TM}$, i.e. $L(M') = \emptyset$. M never accepts $\langle M \rangle$. For all x, however long, M never sees acceptance = $\forall x, M_1 \text{ accepts } x = L(M') = \emptyset$.

\[\langle M, w \rangle \not\equiv_{m} M' \iff \text{ acceptance of } M \text{ on } w \]
Theorem: For all $A \subseteq \text{RE}$, $A \leq_m \text{ATM}$, and so by transitivity $A \leq_m \text{K}_{\text{TM}}$.

Proof: By $A \subseteq \text{RE}$, we can take a TM M with M is fixed, so this just appends x to $\text{L}(M) = A$. Then map any $x \in \Sigma^*$ to $f(x) = \langle M, x \rangle$.

Then $x \in A \iff M$ accepts $x \iff \langle M, x \rangle \in \text{ATM}$. So A reduces A to ATM.

Definition: A language B is complete for a class \mathcal{C} if $B \in \mathcal{C}$ and for all $A \in \mathcal{C}$, $A \leq_m B$. \quad \therefore \text{ATM and K}_{\text{TM}}$ are RE-complete.

ALL-TM is RE-hard since every $A \subseteq \text{RE}$ reduces to it, but not complete because ALL-$\text{TM} \not\subseteq \text{RE}$.

PREVIEW of next week: 1. If we write every second ID in a computation backwards, the language of valid halting computations—by a given TM M on some input x—becomes an intersection $L(D_1) \cap L(D_2)$ of two DCFLs. The OIA checks $L_m I_{t+1}$ for even t, while (L_1, L_2) is mostly like checks for marked palindromes except for the one at two places where M makes changes according to its S. And check L_2's $L_m I_{t+1}$ for odd t.

Then $M \in F_{\text{TM}} \iff L(M) = \emptyset \iff M$ has no valid accepting computations $\iff L_1 \cap L_2 = \emptyset \iff (L_1 \cup L_2) = L'(1) \cup L'(2) = \Sigma^*$.

Now $L'(1) \cup L'(2)$ is the union of two DCFLs, hence it is a CFL. By chaining theorems in the text, we can build a CFG G for it. And "we can build" means there is a computable function f such that $f(<M>) = <G>$. Thus $E_{\text{TM}} \leq_m \text{ALL}_{\text{RE}}$.