Top Hat

What kind of machine (or machine type) can verify computation by a (possibly nondeterministic, L-tape) Turing Machine \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) on an input \(x \)?

Computation \(c = [I_0(x)] [I_1] [I_2] \ldots [I_j] [I_{j+1}] \ldots [I_t] \)

Want to be a halting TD.

Prototypical of checking a proof.

Checking \(I_j \downarrow \) and \(I_{j+1} \) is mostly like checking equality of two strings (over \(\Sigma^* \)).

If we write odd \(I_j \), \(\Sigma \).

Except we need to check \(I_{j+1} \) follows from a legal \(I_j \).

in reverse, \(\Sigma \).

Checking a legal instruction in \(\Sigma \).

This is a very local edit.

marked by \[\] brackets. \(c = [I_0(x)] [I_1 R] [I_2] [I_3 R] [I_4] [I_5] \ldots [I_t] \)

A demo of two DPDA's:

\(D_1 \) and \(D_2 \).

Push \(D_1 \).

Do pop \(D_2 \).

Check for \(u \) in \(\Sigma^* \).

A TM M is halting.

A demo of two DPDA's: (on the \(\Sigma \) in finite control. DPDA \(D_1 \), \(D_2 \).)

whichever boolean check whether last \(D_2 \).

is halting.

The language \(VC_M \) of valid accepting computation by a TM \(M \) is the intersection of two DCFLs.

The complement \(\overline{VC_M} \) is a CFL. Check failure of \(I_j \downarrow \) \(I_{j+1} \) in one place and checking \(I_j \downarrow \quad I_{j+1} R \).

(Or with \(I_k \).)

is like the complement of palindromes which is a CFL; with grammar \(G \).

\(\text{M \in E_{TM} \iff \overline{VC_M} = \emptyset} \iff \overline{VC_M} = \Sigma^* \iff L(D_1) \cap L(D_2) = \emptyset \)

\(\overline{L(D_1)} \cup \overline{L(D_2)} = \emptyset \)

\(\text{M has no valid accepting computation on any input } x. \)

This is the correctness condition for reductions from \(E_{TM} \) to these two problems.
Theorem: A DTM or N TM runs in polynomial time if for all \(x \in \Sigma^* \),
\[
N \leq 3|L_{TM}| = M \quad \text{runs in polynomial time on all inputs.
}\]

Hence, the classical solution to the problem of finding the shortest path
in the graph is to use a polynomial-time algorithm.

Proof: Every algorithm that runs in \(\mathcal{O}(n^e) \) time on \(n \) steps,
where \(e \leq 4 \), is in the complexity class \(\mathcal{P} \).

Linear Bounded Automata (LBAs) are capable of recognizing
\(\mathcal{L} \) when only \(\mathcal{O}(n) \) tape
space is available. The LBAs can be

Two-Head DFAs

Two-Head DFAs are capable of recognizing
\(\mathcal{L} \) when only \(\mathcal{O}(n) \) tape
space is available. The LBAs can be

Linear Bounded Automata (LBAs) are capable of recognizing
\(\mathcal{L} \) when only \(\mathcal{O}(n) \) tape
space is available. The LBAs can be

Linear Bounded Automata (LBAs) are capable of recognizing
\(\mathcal{L} \) when only \(\mathcal{O}(n) \) tape
space is available. The LBAs can be
Thm (Ch3): For every NTM N we can build a DTM M such that LN = L(M).

Proof: N simulated by Java, which runs in polynomial time. We construct a RAM simulator for M, maintaining a data structure of all computation branches, looping over 1-step updates of each one until you find that some branch accepts.

Problem: M will still take exponential (nl) time from this.

Central Question: Can we do it faster? \(P = NP? \)

Theorem: A language \(L \) belongs to NP if and only if there is a polynomial time decidable language \(R \) in \(P \) such that for all \(x \in \Sigma^* \), \(x \in L \iff \exists y : |y| \leq p(|x|) \cdot R(x,y) \).

Proof: Take \(N \) to \(N \) accepts \(L \) and runs in poly time \(g(n) \).

Then \(x \in L \iff (\exists y : c \text{ has an acc comp of } N \text{ on input } x \text{ with poly-time verifier}) \).

Verify this with a 2-HDFA, which runs in \(O(|c|) \) time, and \(|c| \leq g(n)^2 \).

Since \([c] \leq g(n) \) steps time, max size of any IP i in c.

Added: Conversely, given a poly time verifier \(M_2 \) for \(R(x,y) \), we can build an NTM \(N \) that on input \(x \) guesses \(y \) and then verifies \(R(x,y) \).

Since \(|x| \leq p_1(|x|) \) and \(\text{poly}(\text{poly}(n)) = \text{poly}(n) \), \(N \) runs in poly time, so \(L \in NP \).

The Ch4 deciders for DFA, NFA, ALL DFA, E DFA, ECFG all run in poly time.