Top Hat: \(\text{ALL}_{TM} = \{ \langle M \rangle : L(M) = \Sigma^* \} \) and \(\text{TOT} = \{ \langle M \rangle : M \text{ is total} \}

Constructions:

- \(M_1 \) (cf.) \(M_2 \)

- \(M_3 \) (cf.) \(M_4 \)

- \(M_3 \) on \(x \)
 - \(\text{loop} \ (c/1, s) \)
 - \(\text{fail if rej} \)

- \(\text{fall} \ (c/1, s) \)

- \(\text{old rej} \)

Analysis: On any \(x \), don't halt.

\(M_1(x) \) accepts \(\Rightarrow M_2(x) \) halts and accepts
\(M_1(x) \) rejects or does not halt \(\Rightarrow M_2(x) \uparrow \)
\(\therefore M_2 \) is total \(\Rightarrow L(M_1) = \Sigma^* \)
\(\therefore \text{ALL}_{TM} \leq_m \text{TOT} \)

\(M_3(x) \) halts \(\Rightarrow M_4(x) \) accepts \(x \) in either of two ways
\(M_3(x) \uparrow \Rightarrow M_4(x) \) doesn't halt either.
\(L(M_4) = \Sigma^* \Rightarrow M_3 \) is total.
\(\therefore \text{TOT} \leq_m \text{ALL}_{TM} \)

\(\therefore \text{ALL}_{TM} \equiv_m \text{TOT} \)

Intuition: Both require
\((\forall x \in \Sigma^*)(\exists \text{ a computation } \overline{c}) \overline{c} \text{ is valid and accepts/halts.} \)
Turing Machine Computations As Strings

Enough to do for 1-tape TMs. (nondeterministic OK)

An ID can be represented as \(I = [uqv] \)
over the alphabet \(Q \cup \Gamma \cup \{C, \#\} \).

Recall the relation \(I \downarrow M \).

We can write computations as

\[I_0 \] \[I_1 \] \[I_2 \] \[I_3 \] \cdots \[I_t \]

or "ripple style" as

\[I_0 \] \[I_1 \] \[I_2 \] \[I_3 \] \[I_4 \] \cdots \[I_t \]

Define (either can be called ACH or "Accepting Computation"

\(V_M = \{ \varepsilon \text{ written normally: } \varepsilon \text{ is a valid finite } \}
\)

\(W_M = \{ \varepsilon \text{ written ripple style: accepting computation } \}
\)

Facts: (Much proved in th text)

- \(V_M \) and \(W_M \) are both complements of CFLs.
- \(W_M \) is the \(\cap \) of two CFLs.
- \(V_M \) can be recognized by a DFA with 2 Heads.
- One checks \(f_{ij} \cdot f_{hi} \) for each other for \(j \) odd. Line marked false
- \(\Rightarrow V_M \) can be recognized by a Linear Bounded Automaton.
Analysis: \(L(M) = \emptyset \iff V_m \) and \(W_m \) are empty.

And whenever \(L(M) \neq \emptyset \), \(V_m \) is not a CFL, \(W_m \) ditto.

Theorem: \(\text{E}_{TM} \leq_m \text{E}_{TM} \) reduces to all of these problems:

- All CFG
- All NPDAs
- All OPDAs

Inst: \(\theta_{OPDA}, p_1 \), and \(p_2 \)

\(L(\theta_{OPDA}) \cup L(p_1) \cup L(p_2) = \emptyset \)

EQ

CFG is likewise undecidable, not co-either.

Reduce All CFG \(G \rightarrow (G, G') \) where \(L(G) = \Sigma^* \)

\(S \rightarrow aSbS1 \epsilon \)

(similar, \(\text{ALL}_{TM} \leq_m \text{EQ}_{TM} \) so \(\text{EQ}_{TM} \) is neither co- nor co-either.

\(\text{ETM} \leq_m \text{EDLBA} \)

Both DLBA and NLGA are closed \(\leq_m \) ALL DLBA

\(\text{ENLGA} \)

under \(\text{E} \), so \(\text{ALL}_{NLGA} \)

\(\text{NE}_{TM} \leq_m \text{NE}_{DLBA} \leq_m \text{NE}_{2\text{Head DPA}} \)

How about All OPDA? Decidable since OPDAs can be complemented.

How about All NFA? Decidable by NFA-1 DFA

but how hard is it? \(\implies \text{Completeness Theory} \).
Defn: A TM M runs in time $t(n)$ if for all $x \in \Sigma^*$, taking $n = |x|$, there exists a valid computation $I_0(x), I_1, I_2, \ldots, I_t$ with $t \leq t(n)$ within.

If M is nondet, can demand all valid computations have $\leq t(n)$ steps before halting.

Defn: $P = \{L \mid \text{L is recognized by OTMs that run within time } p(n) \text{ for some polynomial } p \}$.

$NP = \{L \mid \text{by NTMs that run in } p(n) \text{ time} \}$

$A \leq_P m B$ if there is a polynomial-time computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that $A \leq f(A) \in B$.

$CFL \leq_P \text{ by CYK alg.}$

Thursday will show completeness for NP under \leq_P reduction.