Theorem: A language \(A \) belongs to \(\text{NP} \) iff there is a
Verifier \(\text{DTM} \ V \) that runs in polynomial time and a polynomial \(p \) such
for all \(x \): \(x \in A \iff (\exists y : |y| \leq p(|x|)) \ [V \text{ accepts } \langle x, y \rangle] \).

Moreover, the body of \(V \) can be either:
- The predicate \(T(<N_A>, x, \mathcal{C}) \) applied to a poly-time \(\text{NFA} \ N_A \) for,
where whole computations \(\mathcal{C} \) are the "\(y \)".
- An easy-to-build (given \(x \) and \(n = |x| \))
sequence \(\{C_n\} \) of poly-size circuits of \(\text{NAND} \) gates and \(n + p(n) \) inputs.

Wlog: \(\Sigma \subseteq \{0, 1\} \), we can demand \(|y| = p(n) \), all nonder \(\mathcal{C} \) steps by \(\text{NFA} \) are binary
and we use single-tape \(\text{DTM} \)s and \(\text{DFMs} \).
Building \(C_n \) from \(x \) and \(n \) takes \(\text{depol time} \).

Proof: \(\iff \) Given \(V \) in any form above, we can take \(p(n) \) to be its polynomial
runtime or circuit size. Define an \(\text{NFA} \ N \) that on any input \(x \) uses (upto) \(p(n) \)
nondeterministic steps to "guess" \(y \) and then deterministically runs \(V(x, y) \), accepting
\(x \) on that run if and only if \(V \) accepts \(\langle x, y \rangle \). Then \(N \) is a poly-time \(\text{DTM} \)
\(L(N) = A \).

\(\Rightarrow \) Given \(A \in \text{NP} \), we can take an \(\text{NFA} \ N_A \) that runs in some polynomial \(\text{NFA} \ p(n) \)
such that \(L(N_A) = A \). Within \(p(n) \) steps, IDs of \(N_A \) \((x) \) can grow to size at most \(p(n) \).
Hence accepting computations \(\mathcal{C} \),
can be coded by strings \(y \in \{0, 1\}^* \) of length \(q(n) = O(p(n) \times p(n)) \).
So the \(T(<N_A>, x, \mathcal{C}) \) predicate from
the last lecture is a poly-time verifier.
Moreover we can stack \(2 \text{Os} \) at \(N \) like \(X \).
Focal Example of a Problem/Language in NP:

SAT:
 INST: A Boolean formula $\phi(x_1, \ldots, x_n)$ in variables x_1, \ldots, x_n with logical gates \land, \lor, \neg.

Q. Is there an assignment $a_1, \ldots, a_n \in \{0, 1\}^n$ that satisfies ϕ, i.e., $\phi(a) = \text{TRUE}$?

$$N = \lvert \phi \rvert \quad \text{then} \quad n = o(N).$$

$$\text{SAT} = \left\{ \langle \phi \rangle : \left(\exists \vec{a} \in \{0, 1\}^n \right) : \phi(\vec{a}) = \text{true} \right\}$$

Again $n << \lvert \phi \rvert$ but we think of n as the size.

$: SAT \in NP.$

Example 2:
 INST: An undirected graph $G = (V, E)$ and an integer $K \leq n = \lvert V \rvert$.

$: \text{INDSET} \in \text{NP}.$

Q. Does there exist a set $I \subseteq V, \lvert I \rvert = K$ st. no two nodes in I have an edge between them.

$: \text{INDSET} \subseteq \text{SAT} \subseteq (\forall \vec{a} \in \{0, 1\}^n) \phi(\vec{a}) \not= \text{TRUE}.$

$: \text{TUT is complementary to SAT, so it is in } \text{co-NP} = \{ L : \overline{L} \in \text{NP} \}.$
Cook-Levin Theorem: SAT \(\leq^P \) NP and for all

Let any \(A \in \text{NP} \) be given. Take a \(p(n) \)-time NIM \(A_N \) s.t. \(L(A_N) = A \).

Given any \(X \), take \(n=|X| \), and compute the circuit \(C_n \) of NAND gates for the \(p(n) \).

We start with the property that \(x \in A \iff \exists \gamma \in \{0,1\}^p \).

\[C_n(x, \gamma) = w_0 = 1. \]

Every NAND gate in \(C_n \) must function correctly by

- AND-ing together all \(\gamma \) clauses \(\phi_g \) over all gates \(g \) in \(C_n \).
- Conjoin the singleton clause \((w_0) \) mandating \(w_0 = 1 \).
- Finally, given a particular \(x \in \{0,1\}^n \), use \(n \) singleton clauses \((x_i) \) or \(\neg x_i \) to set each bit.

Then \(\phi \) has one variable for each wire or input gate of \(C_n \) but \(C_n \) has \(O(p(n)^2) \) wires and is easy to build so \(f(x) = \phi \) is a polynomial time computable function. And \(x \in A \iff \exists \gamma \) then is an assignment to \(\gamma_1 \ldots \gamma_p \) that induces an assigned value to every wire that satisfies \(\phi \).

Thus \(A \leq^P \text{SAT} \), indeed \(\exists \text{SAT} \) with \(\phi \) is a conjunction \((1 \lor \cdots \lor C_n) \) and each clause \(C_i \) has \(n \) most \(3 \) literals.
Another NP-complete Problem: $\neg{\text{ALL}}^n_{\text{NFA}}$

$\neg{\text{ALL}}^n_{\text{NFA}}$ is in NP

because we can guess a and verify that N does not accept a.

- not by converting N to DFA

but by tracing "lights" directly

(3) SAT $\leq^P_{\text{m}} \neg{\text{ALL}}^n_{\text{NFA}}$

$\phi \leq_{\text{m}} N_0$

$\phi = \bigvee_i C_i \
C_1 \land C_2 \land \ldots \land C_m$

We will make it so that some string a is not accepted if a does not refute any clauses, i.e. it satisfies all $C_i = (x_1 \lor \neg x_2 \lor x_3)$$

N_0 has $O(nm)$ states and is built in polynomial time, so $\neg{\text{ALL}}^n_{\text{NFA}}$ is complete. (So is INDUCE, and similarly, ditto)

Also, by complementing, we get $\text{TAUT} \leq^P \text{ALL}^n_{\text{NFA}}$

$\text{ALL}^n_{\text{NFA}}$ is complete for co-NP. Since TAUT is complete for CNP, this gives us $\text{ALL}^n_{\text{NFA}} \equiv^P \text{TAUT}$

just like $\neg{\text{ALL}}^n_{\text{NFA}} \equiv^P \text{SAT}$.

The $\text{ALL}^n_{\text{NFA}}$ problem is maybe harder since

strings x longer than the # of states of N are involved. It is co-NP hard.