
CSE396, Spring 2019 Problem Set 2 Due Thu. 2/21, 11:59pm

Reading: Next week will cover the proofs that every NFA has an equivalent DFA and that every
finite automaton can be converted into an equivalent regular expression. The former is in section 1.2
of reading already assigned, but now read to the end of section 1.3 for the latter. A few notes:

• This will complete the cycle of equivalences started on Thu. 2/14 by converting regular expres-
sions into equivalent NFAs.

• In my opinion, the Generalized NFA (GNFA) is not “real” the way the Tuesday 2/12 lecture
tried to put across that NFAs are real. It is a bookkeeping device to execute the algorithm
embodied in the proof.

• The course webpage has an optional handout that gives a “programmatic” version of the
algorithm: https://cse.buffalo.edu/~regan/cse396/CSE396.regexpalg But lectures will
use pictures like the text does.

• Lectures will however present some “economizers” to make the process of doing problems less
painful and typo-prone. One is using all 2-state GNFas as the base case so you save a step
at the end when the expressions are biggest. Another is never having to make a new start
state. Another is that you only need to make a new final state when the NFA has two or more
accepting states that are different from its start state. Understanding why these shortcuts are
valid is IMHO a mark of really understanding the algorithm on the whole.

Homework—part online and all individual work—due Thu. 2/21, 11:59pm:

(1) Using TopHat, the “Worksheet” titled Spr’19 HW2.1. There are 10 questions, each worth 2
points, for 20 total.

(2) Let D = (A ∩B) \ C where

A = {w ∈ {a, b}∗ : #a(w)%2 == 0}
B = {w ∈ {a, b}∗ : #b(w)%2 == 1}
C = (a+ b)∗ab(a+ b)∗.

(a) Build a DFA M with 5 states such that L(M) = D. As usual, the states should have some
logic comments.

(b) Build an NFA N with 4 states such that L(N) = D.

(c) Give a regular expression r such that L(r) = D.

Part (b) may seem trivial and N might not “feel like” an NFA—but you can consider whether it
helps you focus on what was needed in part (c). (12 + 6 + 9 = 27 pts.)

(3) Again with Σ = {a, b}, define L1 to be the language of the regular expression b(ab)∗(a + ε)
and L2 to be the language of strings that start with b and have an even number of a’s. Design
DFAs M1 and M2 such that L(M1) = L1 and L(M2) = L2, with just a few appropriate strategy
comments. Then expressly use the Cartesian Product construction to design a DFA M3 such that
L(M3) = L(M1) ∩ L(M2). (You might fear that M3 would have a lot of states, but since this is the
∩ case and both L1 and L2 have “dead conditions,” you should note that you can economize quite
a bit. 6+6+18 = 30 pts., for 77 on the set.)


