CSE439 Week 11: Grover's Algorithm (ch. 13), then into Ch. 14

All of our previous quantum algorithms have been ones where an n-qubit Hadamard transform has
been applied once, then an oracle gate or other computation to create a functional superposition

RENTN

x€{0,1}n

and then one further transform---Hadamard or Fourier---before measuring the entire output. [Footnote:
the notation xf(x)> for the body of the sum is equivalent.] Further iterations are managed by a routine
with classical control. Grover's algorithm, however, has successive quantum stages that each use two

banks of Hadamard gates. The 2" X 2" matrices H®" are just as easy as any other in a "Schrédinger-
style" simulation where you multiply matrices. But in a "Feynman-style" simulation where we count
nondeterministic witness strings, the repeated Hadamard transforms mushroom the witness space.
(This is why the groverDemo in my simulator has not been implemented yet.)

Grover's algorithm as originally presented applies only at "witness scale": a space of N = 27 potential
witness strings using g = g(n) qubits, not N separate physical locations as commonly talked about.

Whether it can apply to N physical sites with O(\/ﬁ) effort is IMHO controversial. However, at

witness scale, there aren't even \/N physical sites, only g qubits with basis vectors |0q> through |1”7>.
A solution set S C {0, 1}7 is represented by the "hit vector" hg defined by

1
—— ifyes
hs(y) = 1 Vs

0 otherwise

This is just the normalized sum of the basis vectors corresponding to strings in S. Except: if S is empty,

then this would be the zero vector in CN, which is not a legal quantum state. There is a further worm in
this apple:

* There are 2V = 2?2 different possible subsets S.
« Thus it seems that each hit vector hg carries N bits of information.
* However, we are using only g < N qubits, and we need to remind ourselves about:

Holevo's Theorem: It is not possible to extract more than g bits of classical information from any g-
qubit quantum state.

Thus, like the situation with graph states, the quantum representation of solution sets is inevitably
lossy.



This is part reason for Lov Grover's original attention only to singleton sets S = {y}, whereupon we
simply have hg = |yy). Then distinguishing among the 27 possibilities (all of them not the empty set)
involves only g bits of information. Any setting that allows |S| > 1 involves some information smearing.
The final point here is that the measurement at the end of the algorithm will give you just one witness,
not necessarily the whole set of them. When S = {y} it is the whole set, but otherwise not.

At witness scale, the running time is not sub-linear but merely quadratically sub-exponential:

~

O(\/@ = n9W2aM/2 \which is still 2-to-the-linear exponential time, not even 2‘7(”)1/2. Here the

multipler---which is the time per iteration---includes the polynomial gate count s = s(n) = n°m . As
an aside, | am skeptical that this is a true measure of quantum effort. Well, we should examine the
quantum circuits, after seeing the idea of the algorithm.

How Grover Search Works

Grover's algorithm actually operates completely within a 2-dimensional subspace of CN. The

subspace is spanned by two vectors: hg and the vectorj = H®|07). (Unless S = {0, 1} in toto,
which makes them equal.) We do not know hg in advance, but we do know j. The "miss" vector
mg = h_¢ also belongs to the subspace, since it equals
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We don't know mg either, but provided S is given by a polynomial-time decidable witness predicate
R(x, y) of our problem instance x, then we can reflect around it by means of the Grover oracle

hs.

-1 ifR(x,y)
Ur[xy, xy] = —1R(x'y):{ I
When x is fixed, the Grover oracle drops down to an N X N diagonal matrix G, with entry

Gyly,yl = —1ify € Sand G,[y, y] = 1 otherwise. To compute it, we can apply an idea that the
textbook calls "flipping a switch" in section 6.5 but might be better called the idea of using an extra qubit
as a catalyst. The catalyst is that we initialize the extra qubit not to |0) or | 1) but to

1
d = H|1) =$(|0>—|1>).

We can create a quantum circuit Cy of deterministic gates only (Toffoli plus constant initializations) for
the reversable form of the Boolean function f,(y) = R(x, y), which is the (g + 1)-bit function

F.(yb) = y(b ® f(y)). Now define g,(y) = Co(ly> ®d) using our catalyst. We get
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If we "throw away" the last qubit (say by measuring it and ignoring the result) then we get the Grover
oracle action on the first g qubits. So for polynomial-time witness predicates R(x, y), the Grover oracle
is feasible to compute.

The key next point is that in the geometry of the 2-dimensional space, the Grover oracle represents
reflection around the miss vector mg. Note first that G,mg = mg because no nonzero entry gets
negated. And G,hs = —hg because all the nonzero entries get negated. Therefore the action of G,

in this space is reflection about m;.

The other operation we want is reflection about j. In general, reflection of a vector v around a vector x
involves first taking the projection of v onto x, which is (v, x)x. Then we want to move v by twice the
difference of that to v:

vH2(p-v)=2p-lv

p={x 0)x
v

The matrix operator that creates the projection of an argument v along x is the outer product | x ){x|,

whose [i, j] entry is xix_]-. The Dirac notation is especially handy here, because we can do

[0 x |- [o) = [x)<x]|o) = (x,0)|x).

So the operator that creates the reflection is 2|x){x| — I. Inthe case x = j this is given by the matrix

2] — I where each entry of J is ]%] and Iis the N X N identity matrix.

Because we are talking about exponential-sized matrices, it is relevant to ask about the feasibility of
computing their actions. An equation by which to build the reflection about j is



2]_1 — H®q(_1)NOR(1..q)H®q.

The (—1)NOR(-4) is implemented via a controlled-Z gate on one qubit with controls on the other (g — 1)

qubits---it doesn't matter which, as the gate is symmetric. By itself, that gate computes (—1)AND(1"‘7),

so it is sandwiched between two banks of NOT gates to get the action of NOR. To see why this
works, consider first that on any basis input |x), H®|x) = \/Lﬁzy(—l)"@ﬂy). Applying the
(_1)NOR(1..q) gives
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Applying H®7 again gives

1 . 1
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Now the outer sum over ¥ in the first term vanishes except when z = x, so we get

%EW _ %sz = ) - %sz = @ - 2Py,

This is (—1) times what we expected, but the global scalar does not matter. The last thing to say is that
whenever v belongs to our 2-dimensional subspace, the reflection of v around j stays within it.

[Thursday's lecture will pick up here, revisiting the diagram but this time to emphasize what we do not
know and why we cannot take shortcuts.]

The Search Process

Let v stand for the angle between j and mg. Then a = cos 1(j, mg) = sin~1(j, hg). When
|S| = o(N), then a is small enough to use the estimate sina = «, so we get

a = Si].'l_l<j,h5> = <]/h5> =
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is always about the square root of the expected time for guessing uniformly at random and verifying. If

o . : . : n/2 _n m [N _.
The number of iterations (each a pair of reflections) we will need is about —— = X — g This



we know |S|, then we know how many iterations to make before measuring; if we don't know |S|, then
there are further tradeoffs discussed later. In any event, unless |S| = (Q(N), we have a = 0(1), so that

the angle « is best pictured as very small. When |S| < \/ZTT we have
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as the most relevant range of angles. Now to summarize what we know and don't know:

1. We know a vector j in the two-dimensional subspace H generated by the hit vector hg and its
orthogonal complement, the miss vector mg.

2. The goal is to build a quantum state ¢p whose vector is within € of hs, so that measuring ¢ will
with probability = 1 — € yield a member of S.

3. We know thatj is close to mg, so thatjl is close to hg (or opposite to hg---either way;,
measuring jl would yield a solution whp.), but we have no idea how to constructjl within H.

4. What we do have are feasible circuit components computing reflection around mg and reflection
aound j that stay within H.

5. If we know |S|, then we know the number of iterations that produces a vector ¢ closest to hs.
Moreover, qb will be within angle « of hg.

Here is a diagram of the iteration process. It is different from most other diagrams by emphasizing the
smallness of & and not giving the impression thath- is knowable by aligning it with vertical or horizontal
axes. The iteration starts by reflecting the known vector j around mg. The next five iterations (each a
rotation by 2« effected by two reflections) are shown and color-coded.

(4 jJ‘ (but we don't know how to construct it)

hs = mé‘ (the desired target)




It may seem strange that we cannot jump straight to jl fromj or otherwise leverage the initial proximity
to m; in a way that would at least allow taking bigger steps toward hg than repeated rotation by 2a. It
looks even more enticing upon realizing that getting within 45° of hg, that means anywhere in the lower-

right quadrant shown, gives at least a sin? (g) = % chance of the measurement giving a string in S.

The picture makes it look like we could hit that quadrant quickly just by throwing darts at it. But the
point is that the "dartboard" H is hidden inside a vastly higher dimensional space, and we have no
direct information besides the j vector of how it lies. In fact, the above process is tightly optimal.

The Case of General Solution Count

If |S| is unknown, we can guess a stopping time < \/N uniformly at random. Now the "dartboard"
reasoning works in our favor since everything happens within the subspace H, and the expected time
to find a solution is only a constant factor greater than when |S| is known. Namely:

+ Do t pairs of reflection steps around j and around mg.

« If t happens to be > |S| this may gyrate multiple times around the circle. But:

« Except when S is everything, this gives about at least a 0.25 chance of ending in the quadrant of
within 45° of hg.

+ If the trial ends up in the quadrant, it has at least a 0.5 chance of getting a true solution v from
the measurement. The y can be verified by computing R(x, v) deterministically.

« Thus each random trial over t has at least a 0.125 chance of ultimate success.

This argument is sloppier than it needs to be, but it's enough to conclude that a solution can be
expected within a constant number of trials, regardless of the size of S. Thus the expected time to find

a solution remains O(\/ZV)

Circuit Implementation and Problematic Aspects

The Grover oracle is deterministic except for the single Hadamard gate used to initialize the catalyst
qubit to the difference state d. We do not have to re-initialize it, however, because the output after the
evaluation remains (—1)*®¥)|y)» ® d. The issue is the reflection about ms. Done straightforwardly, it
is heavy on the H gates, as evinced by the following example which can be created in Davy Wybiral's
quantum web applet:



e>{ =« Hx o=« HxHzHxH=+Hx o=+ HxHzHxH+*Hx —o—
\0>-—o—--x—i—x--—o——-x—¢—x--—._
o>{+« —@ -« Hx | xHs——@ < Hx|@{xHs —@—
0>{ #« H x @— =« Hx @ xH=+Hx | —@+Hx @ xH=Hx | @—
e>{« ——eo— « HxO®{xHs|l—e@-«“Hx O xH+ | —@—
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0.11132812+0.000000001 |011000> 1.2394% -
-0.11132812+0.000000001 [011001>  1.2394%
0.33007813+0.000000001 |011010>  10.8952%
-0.33007813+0.000000001 [011011>  10.8952%
0.1113281340.000000001 [011100>  1.2394%

Here the Grover oracle is x; A xy A X3 A X, A x5 giving S = {01101}. This is implemented as a multi-

controlled flip of the catalyst line (where a single H follows the ancilla | 1) value) with X gates to make
x, and x,. The initial bank of Hadamards on the first five qubits is to create the j vector on them. The

four other banks, however, are for the two reflections about j. The angle « is

i
sin! (1/‘\/ 32] = 0.1777... radians. The desired number of iterations is 4— = 4.42; the diagram
a

counts as 2.5 iterations. This is close enough to show more probability accumulating on the string
01101 on the first five qubits.

If we make a brute-force algebraic or logical simulation out of this, however, the Hadamard gates for the
reflections give rise to 20 new variables. The number of Feynman paths grows by a factor of more than
1,000 per iteration. (This also causes major branching in the witness space for problem 3 on
assignment 4.) This growth would quickly choke the path-counting simulation written in C++ which I've
demo'ed. [Hence groverDemo is not yet coded. The hope is to perform logical simplifications of the
representation of the current quantum state so as to combine paths and reduce the branching factor,
but results so far have not been promising.]

The multi-controlled Z gate has its own element of excess. Yes, OK, the Grover oracle in this case is
also multi-controlled, but one expects to expend more effort on it---and it could be a larger network of
gates with only one control each. The reflection about j, however, really uses all the controls. IBM
researchers have found even the double-controlled Toffoli gate to be difficult to engineer, which is why
their preferred basis consists of H, CNOT, and the T gate.



Chapter 14: Qubit Representations, Physical States, and Operators

A qubit is a physical system whose state ({) is described by a pair (7, b) of complex numbers such that
la]> + |b|> = 1. The components of the pair index the basic outcomes 0 and 1. There are two ways
we can gain knowledge about the values 7 and b:

« We can prepare the state from the known initial state e = (1, 0) by known quantum
operations, which here can be represented by 2 X 2 matrices.
* We can measure the state (with respect to these basic outcomes), in which case:
— We either observe 0, whereupon the state becomes e, or we observe 1, in which case the
state becomes e; = (0, 1).
— The probability of observing 0 is |a|2, of getting 1 is |b|2. Called the Born Rule, for Max
Born.

If both @ and b are real numbers, then we can picture the qubit as a point on the unit circle in R?:

11> [0,1]
jal? + b)? = 1 4.2
a = cos0 7 &
b
b = sinf ‘3

[1,0] [0}

(transpose notation omitted here)

The qubit state ¢ = [a, b] represents aey + be; = a[1,0] +0b[0,1] = a|0) +b|1)

If@zgthen cosO = % so|a|> = 0.25. Andsin@ =b = ?so |b|> = 0.75. Note that

a = {p|0)andb = {¢p|1). What the measurement does is project onto the standard basis.

We can get different probabilities by projecting onto a different basis. Note that

11 \/3 13 2732,
(p|+) = \75(5-1 + 7-1] = a2  aes. T 0.9659...

and squaring that gives just over 0.933. Thus, this particular quantum state ¢ gives a higher probability
of one result when measured in the |+, | —) basis---and a near-zero probability of the other resuilt.

What happens to ¢ after a measurement? The full picture is much debated, but the local happening is
clear: ¢ becomes the basis state corresponding to the result obtained. The fact that we---humans---
can elect to measure in a particular choice of basis will be a major component of quantum
communication protocols and the CHSH Game on-tap later in Chapter 14. The "election" part is as



easy as twirling a polaroid filter (if that is free will, mind you).

(1) That the particles' states become basis states in the particular measurement frame is shown by the
Stern-Gerlach experiment. In the setup, the measurable physical state "spin up" is denoted by | T )
and can be treated like |0). There is a distinct physical state called "spin down" and denoted by | | ),
which plays the role of | 1). These are the only two distinguishable outcomes that manifest when a
magnetic field acts on the particle (relative to the orientation of the field; incidentally, "spin" is not-
rotation per-se). Once a particle "chooses" between | T ) or| | ), thatis its state upon going through
a second Stern-Gerlach device with the same orientation.

Isvl
Source

(2) But if the second device changes the orientation, then the particles once again behave
nondeterministically with respect to the changed orientation. This is shown more cheaply using
polarizing filters, except for not being able to identify the particles (of light) individually.
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polarized up sin?60 cos?60

The individual photons do not "lose mojo" after their orientation "collapses" onto the basis state. |t
appears that way because of the physical fact that those photons giving the opposite outcome are
absorbed by the filter.
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In the second situation, the first filter produces light that is polarized up. The second filter absorbs

cos? (g) = % of that light and the other % is passed through with diagonal polarization (analogous to

1
the | +) basis state). The third filter absorbs 5 again of that light. Positioning the middle filter at any
angle 6 between 0 and g allows cos?(0) - sin(0) of the light from the first filter to go through. This

goes to zero as 6 approaches either 0 or 90° and is maxed for @ = 45°. The Born Rule in action!

For most work with quantum circuits, we may suppose that a single measurement is taken at the end,
and the output is read from the basis state |y> that is returned. Or we may run a circuit multiple times,
thus sampling y from the output distribution. The principle of deferred measurement, which was
seen in Chapter 6, makes this be "without loss of generality" in most computing situations---provided
the measurement results are used only as controls for other gates. Quantum communication protocols,
however, require a fuller formulation of measurement via linear algebra. This will come hand in hand
with mixed states, which "are" classical probability distributions over unit vectors that are quantum
pure states. Doing this is facilitated by the Bloch Sphere representation of qubits.



The Bloch Sphere

The previous (part of) lecture showed the limitations of the Cartesian picture for viewing even the

simple computation [2,b]T = HTHJ|0). So we will study one that gives a different picture of physical
reality.

The first point is that the complex numbers a = x + iy and b = u + iv involve 4 real numbers, but the
requirement |a|% + |b|?> = 1 imposes one constraint, thus essentially cutting the "real degrees of
freedom" down to 3. A second factor cuts it down to 2. The following definition will be useful for
quantum states of multiple qubits as well:

Definition: Two quantum states ¢, ¢ are equivalent if there is a unit complex number ¢ such that

¢ = co.

For example, i(—1, 1) is equivalent to %(1, —1), but neither is equivalent to L(1, 1), nor any of

V2 V2 V2

these to our basic states (1, 0) and (0, 1). In the line for the matrix Y, ie; is simply equivalent to just
e1, —ieg to ep, —il to i, and irt. We could also regard Y as equivalent to
v - | 01 l
-1 0
which makes clearer that it is a combination of X and Z (indeed, iY = ZX = —XZ). Finally, to
finish the line for Z, Ze; = —e; = e;.

Regarding our saying equivalence, note that if c = a + bi, then

= - = - - = = :a—bi:E,
a + bi (a + bi)(a — bi) a? + b? 1

1 1 a — bi a — bi a — bi
c

which is the complex conjugate of ¢ and is likewise a unit complex number. Since ¢ = c¢’ the
relation is symmetric. That the product of two unit complex numbers is a unit complex number makes it
transitive, and being reflexive is immediate with ¢ = 1, so this is an equivalence relation.

A unit complex number can be written in polar coordinates as ¢ = e”? for some angle y, which
represents a "global phase." Thus, dividing out by this equivalence relation emphasizes the relative
phase @ of the two components. So let us write our original quantum state (j) in polar coordinates as

(aei“, beiﬁ) where now a, b are real numbers between 0 and 1. Choose y = —a, then
cp = (a,be’”) withp = B — a. Sincea® + b? = 1, the value of b is forced once we specify a.

So 7 and ¢ are enough to specify the state. These are the 2 true degrees of freedom.

We can uniquely map points (4, ) to the sphere by treating ¢ as a longitude and a? (rather than a) as
a latitude where the north pole is 1, the equator is 0.5, and the south pole is 0. Then the latitude gives



the probability of getting the outcome 0. All states that give equal probability of 0 and 1 fan out along
the equator. The north pole is |0) and the south pole is |1). And again:

1 1
« —(1,1) = —(|0) + |1)) is called |+ ), the "plus" state.
FUD = £(0) + 1) [+, the "p
1 1
. 1,-1) = —\(|0) — [1)]) is called |- ), the "minus" state.
S0 = (10 - 1) -
Here they all are, graphed on the Bloch Sphere:
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Among web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (free

registration required). Here is its graph for the | +) state. It is more usual to show the x axis out
toward the reader and y at right, but that is less convenient IMHO for picturing |+> and |—>

Qubit 0 - Bloch sphere


https://quantum-circuit.com/home

Some algorithms, however, are IMHO easier to picture using the original planar diagram in Cartesian
coordinates:

11> = (0,1
K

1 — 1
e (1,—1)% Rk 1)75

.

For one thing, this makes it easier to tell that |0) and | 1) are orthogonal vectors, that |+ and |—) are

10 = (1,0)

likewise orthogonal vectors, and that the orthonormal basis {l +), |—>} is obtained by a linear

transformation (indeed, a simple rotation) of the standard basis {|0>, |1>} We will even use this to

illustrate the CHSH Game.

A downside, however, is that this diagram gives extra points for equivalent space, whereas the Bloch
sphere is completely non-redundant. The Bloch sphere is also "more real" than the way we usually
graph complex numbers via Cartesian coordinates. In fact, every unitary 2 X 2 matrix U induces a
rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1
correspondence with lossless quantum operations on a single qubit. Whereas, the planar diagram
gives a cut-down picture of how H acts as a rotation without fully showing you its axis.

The axis of the H gate goes through the origin and the point corresponding to the pure state
] = 0.85355339... That's the number

Tt Tt

) = [cosg, sin g ] With this vector, the latitude is cos? (8
we got from the HTH computation. Note: the latitude looks like it should be "3/4" but it's not. The

equator is 0.5 and the diagonal point is % of the way up from equator to the pole, so the latitude is

05 + 0.5—= = 0.85355339... as required.
N

Mixed States and Quantum States as Operators

A pure state of 7 qubits is one denoted by a unit vector in Czn. A mixed state is any linear
combination of pure states by non-negative weights that sum to 1. That is, a mixed state is a classical
probability distribution over pure states. Whether "mixed state" includes pure states depends on
context; one can say "properly mixed" to exclude pure states.



For one qubit, every properly mixed state maps to a point interior to the Bloch Sphere. This also holds
for generalizations of the Bloch Sphere to higher dimensions for more qubits. So let us have pure
states |1, ..., | y and probabilities py, ..., p,, summing to 1. Then

pild1) + o+ puldm)

is the "standard" representation of the mixed state. We will see momentarily that, like writing |q§k> to
begin with, it may presume more than we can directly sense. A philosophical question that comes first
is whether a mixed state is a "thing", or just our lack of full knowledge about the state. To appreciate
this, we need to treat both pure and mixed states as operators and formalize more about how
measurements are represented in any basis.

Definition: For any mixed state represented as p1|¢1) + pa|¢p2) + -+ + pu|Pum ), where the p;
are nonnegative and sum to 1, the corresponding density matrix is

p = p1ld1){d1] + pal 02)<P2| + -+ + pul Pu){Pm].

Per the above philosophy, p is all we can know about the mixed state (aside from any prior knowledge
from having prepared it). The letter p tends to be used, without a ket or bra around it. Some more
facts:

1. Since it is a weighted sum of outerproducts, a density matrix is always Hermitian: p* = p.

2. The matrix designates a pure state if and only if p2 = p; note that this is automatic as shown
above when m = 1.

3. The results of measuring a mixed state can be computed by applying p as an operator to update
the state. By linearity, this is the same as working with each individual term and taking the linear
combination.

For example, the mixed state obtained by averaging the two basis states is

0.5 o]

0.5/0)€0[ +0.5]1)<1| = 0-5l1 0]+0'5l0 O] - l 0 05
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This is not the same as |+){+| = i.i,[l 1] _ [
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l, which is not the same and no longer has trace equal to 1. The trace

]. Note that the square of the

025 0

0 025
Tr(M) of a square matrix M is the sum of the entries on the main diagonal. (We will later see a related
notion for non-square matrices.) Whereas, the square of the latter matrix is itself.

former martrix is |

[Lecture on 11/6/25 ended here. Tuesday 11/11 will pick up with more examples of mixed states.]



