
CSE439 Week 11: Grover's Algorithm (ch. 13), then into Ch. 14
 
All of our previous quantum algorithms have been ones where an -qubit Hadamard transform has n
been applied once, then an oracle gate or other computation to create a functional superposition
 

,∑
 

x∈ 0,1 n{ }

x f x( )

 
and then one further transform---Hadamard or Fourier---before measuring the entire output.   [Footnote: 
the notation  for the body of the sum is equivalent.]  Further iterations are managed by a routine xf x( )

with classical control.  Grover's algorithm, however, has successive quantum stages that each use two 
banks of Hadamard gates.  The  matrices  are just as easy as any other in a "Schrödinger-2  ×  2n n H⊗n

style" simulation where you multiply matrices.  But in a "Feynman-style" simulation where we count 
nondeterministic witness strings, the repeated Hadamard transforms mushroom the witness space.  
(This is why the groverDemo in my simulator has not been implemented yet.)
 
Grover's algorithm as originally presented applies only at "witness scale": a space of  potential N =  2q

witness strings using  qubits, not  separate physical locations as commonly talked about.  q = q n( ) N

Whether it can apply to  physical sites with  effort is IMHO controversial.  However, at N O N

witness scale, there aren't even  physical sites, only  qubits with basis vectors  through .  N q 0q 1q

A solution set  is represented by the "hit vector"  defined byS ⊆ 0, 1{ }q hS

 

. h y  =  S( )

1

|S|
if y ∈ S

0 otherwise
 
This is just the normalized sum of the basis vectors corresponding to strings in .  Except: if  is empty, S S
then this would be the zero vector in , which is not a legal quantum state.  There is a further worm in C

N

this apple: 
 

• There are  different possible subsets .2  =  2N 2q
S

• Thus it seems that each hit vector  carries  bits of information.hS N
• However, we are using only  qubits, and we need to remind ourselves about:q ≪  N

 
Holevo's Theorem: It is not possible to extract more than  bits of classical information from any -q q
qubit quantum state.
 
Thus, like the situation with graph states, the quantum representation of solution sets is inevitably 
lossy.  
 

 

 



This is part reason for Lov Grover's original attention only to singleton sets , whereupon we S = y{ }

simply have .  Then distinguishing among the  possibilities (all of them not the empty set) h =S y 2q

involves only  bits of information.  Any setting that allows  involves some information smearing.  q |S| > 1

The final point here is that the measurement at the end of the algorithm will give you just one witness, 
not necessarily the whole set of them.  When  it is the whole set, but otherwise not.  S = y{ }

 
At witness scale, the running time is not sub-linear but merely quadratically sub-exponential: 

, which is still 2-to-the-linear exponential time, not even .  Here the  =  n 2O N O 1( ) q n /2( ) 2q n( )
1/2

multipler---which is the time per iteration---includes the polynomial gate count  .  As s = s n  =  n( ) O 1( )

an aside, I am skeptical that this is a true measure of quantum effort.  Well, we should examine the 
quantum circuits, after seeing the idea of the algorithm.
 
 
How Grover Search Works
 
Grover's algorithm actually operates completely within a -dimensional subspace of .  The 2 C

N

subspace is spanned by two vectors:  and the vector .  (Unless  in toto, hS j =  H⊗q 0q S = 0, 1{ }q

which makes them equal.)  We do not know  in advance, but we do know .  The "miss" vector hS j
 also belongs to the subspace, since it equalsm = hS ∼S

 

 ,      so that     .
⋅ j - ⋅ hN |S| S

N - |S|
j =  m  +  h

N - |S|

N
S

|S|

N
S

 
We don't know  either, but provided  is given by a polynomial-time decidable witness predicate mS S

 of our problem instance , then we can reflect around it by means of the Grover oracleR x, y( ) x
 

.U xy, xy  =  -1  =  R[ ] ( )R x,y( ) -1 if R x, y( )

1 if ¬R x, y( )

 
When  is fixed, the Grover oracle drops down to an  diagonal matrix  with entry x N × N Gx

 if  and  otherwise.  To compute it, we can apply an idea that the G y, y = - 1x[ ] y ∈ S G y, y = 1x[ ]

textbook calls "flipping a switch" in section 6.5 but might be better called the idea of using an extra qubit 
as a catalyst.  The catalyst is that we initialize the extra qubit not to  or  but to0 1

 

.  d =  H  = -1
1

2
0 1

 
We can create a quantum circuit  of deterministic gates only (Toffoli plus constant initializations) for C0

the reversable form of the Boolean function , which is the -bit function f y = R x, yx( ) ( ) q + 1( )

.  Now define  using our catalyst.  We get F yb = y b⊕ f yx( ) ( x( )) g y  =  C ⊗ dx( ) 0 y

 

 



 
 

g y = C  =  = -x( ) 0( y
 - 0 1

2

C  - C0 y0 0 y1

2

1

2
y f yx( ) y ¬f yx( )

= = = -1 ⊗ d

-y1 y0

2
if f y = 1x( )

-y0 y1

2
if f y = 0x( )

⊗ -dy ( ) if R x, y( )

⊗ dy if ¬R x, y( )
( )R x,y( ) y

 
 
If we "throw away" the last qubit (say by measuring it and ignoring the result) then we get the Grover 
oracle action on the first  qubits.  So for polynomial-time witness predicates , the Grover oracle q R x, y( )

is feasible to compute.  
 
The key next point is that in the geometry of the 2-dimensional space, the Grover oracle  represents 
reflection around the miss vector .  Note first that  because no nonzero entry gets mS G m = mx S S

negated.  And  because all the nonzero entries get negated.  Therefore the action of  G h  =  - hx S S Gx

in this space is reflection about .  ms

 
The other operation we want is reflection about .  In general, reflection of a vector  around a vector  j v x
involves first taking the projection of  onto , which is .  Then we want to move  by twice the v x ⟨v, x⟩x v
difference of that to :v
 

 
The matrix operator that creates the projection of an argument  along  is the outer product , v x x x

whose  entry is .  The Dirac notation is especially handy here, because we can doi, j[ ] xix⏨j

 
.  ⋅  =   =  ⟨x, v⟩x x v x x v x

 
So the operator that creates the reflection is .  In the case  this is given by the matrix 2  -  Ix x x = j

 where each entry of  is  and  is the  identity matrix.  2J - I J
1

N
I N × N

 
Because we are talking about exponential-sized matrices, it is relevant to ask about the feasibility of 
computing their actions.  An equation by which to build the reflection about  isj
 

 

 

v

x
p = ⟨x, v⟩x

v + 2 p - v = 2p - v( )

v'



.2J - I =  H -1 H⊗q( )NOR 1..q( ) ⊗q

 
The  is implemented via a controlled-  gate on one qubit with controls on the other  -1( )NOR 1..q( ) Z q - 1( )

qubits---it doesn't matter which, as the gate is symmetric.  By itself, that gate computes , -1( )AND 1..q( )

so it is sandwiched between two banks of  gates to get the action of .  To see why this NOT NOR

works, consider first that on any basis input , .  Applying the x H = -1⊗q x
1

N
∑

 

y ( )x⊙y y

 gives-1( )NOR 1..q( )

 

 -1  +  -1   = -1  -  
1

N
∑

 

y≠0q
( )x⊙y x

-1( )

N
( )x⊙0q

0q 1

N
∑

 

y
( )x⊙y y

2

N
0q

 
Applying  again givesH⊗q

 

-1 -1  -  -1  = -1  -  
1

N
∑

 

y
∑

 

z
( )x⊙y( )z⊙y z

2

N
∑

 

z
( )z⊙0q

z
1

N
∑

 

y
∑

 

z
( ) x⊕z ⊙y( ) z

2

N
∑

 

z
z

 
Now the outer sum over  in the first term vanishes except when , so we gety z = x
 

. -   =   -   =  I -  2J
1

N
∑

 

y
x

2

N
∑

 

z
z x

2

N
∑

 

z
z ( ) x

 
This is  times what we expected, but the global scalar does not matter.  The last thing to say is that -1( )

whenever  belongs to our 2-dimensional subspace, the reflection of  around  stays within it.v v j
 
[Thursday's lecture will pick up here, revisiting the diagram but this time to emphasize what we do not 
know and why we cannot take shortcuts.]
 
The Search Process
 
Let  stand for the angle between  and .  Then .  When 𝛼 j mS 𝛼 = ⟨j, m ⟩ = ⟨j, h ⟩cos-1

S sin-1
S

, then  is small enough to use the estimate , so we get|S| = o N( ) 𝛼 𝛼 ≈  𝛼sin

 
𝛼 =  ⟨j, h ⟩ ≈  ⟨j, h ⟩ =  sin-1

S S

y is a solution ⋅  =  S ⋅  =   =  .∑
 

y

[ ]
1

N S

1

N S

|S|

N

|S|

N

 

The number of iterations (each a pair of reflections) we will need is about .  This =   ≈
𝜋 / 2

2𝛼

𝜋

4𝛼

𝜋

4

N

S
is always about the square root of the expected time for guessing uniformly at random and verifying.  If 

 

 

  

      

   



we know , then we know how many iterations to make before measuring; if we don't know , then |S| |S|

there are further tradeoffs discussed later.  In any event, unless , we have , so that |S| = 𝛺 N( ) 𝛼 = o 1( )

the angle  is best pictured as very small.  When , we have𝛼 |S| ≤  N

 ≤  𝛼 ≤  
1

N

1

N
as the most relevant range of angles.  Now to summarize what we know and don't know:
 

1. We know a vector  in the two-dimensional subspace  generated by the hit vector  and its j H hS

orthogonal complement, the miss vector .mS

2. The goal is to build a quantum state  whose vector is within  of , so that measuring  will 𝜙 𝜖 hS 𝜙

with probability  yield a member of .≈ 1 - 𝜖 S
3. We know that  is close to , so that  is close to  (or opposite to ---either way, j mS j⟂ hS hS

measuring  would yield a solution whp.), but we have no idea how to construct  within .j⟂ j⟂ H
4. What we do have are feasible circuit components computing reflection around  and reflection mS

aound  that stay within .j H
5. If we know , then we know the number of iterations that produces a vector  closest to .  |S| 𝜙 hS

Moreover,  will be within angle  of .𝜙 𝛼 hS

 
Here is a diagram of the iteration process.  It is different from most other diagrams by emphasizing the 
smallness of  and not giving the impression that  is knowable by aligning it with vertical or horizontal 𝛼 j⟂

axes.  The iteration starts by reflecting the known vector  around .  The next five iterations (each a j mS

rotation by  effected by two reflections) are shown and color-coded.2𝛼
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h = mS
⟂

S (the desired target)

0

11...

9

8

7

6

5

4

3

2

1

10

j⟂

⋮

⋮

……

𝛼

4



It may seem strange that we cannot jump straight to  from  or otherwise leverage the initial proximity j⟂ j
to  in a way that would at least allow taking bigger steps toward  than repeated rotation by .  It mS hS 2𝛼

looks even more enticing upon realizing that getting within  of , that means anywhere in the lower-45∘ hS

right quadrant shown, gives at least a  chance of the measurement giving a string in .   =  sin2 𝜋

4

1

2
S

The picture makes it look like we could hit that quadrant quickly just by throwing darts at it.  But the 
point is that the "dartboard"  is hidden inside a vastly higher dimensional space, and we have no H
direct information besides the  vector of how it lies.  In fact, the above process is tightly optimal.  j
 
 
The Case of General Solution Count

If  is unknown, we can guess a stopping time  uniformly at random.  Now the "dartboard" |S| t ≤ N
reasoning works in our favor since everything happens within the subspace , and the expected time H
to find a solution is only a constant factor greater than when  is known.  Namely:|S|

 
• Do  pairs of reflection steps around  and around .t j mS

• If  happens to be  this may gyrate multiple times around the circle.  But:t ≫  |S|

• Except when  is everything, this gives about at least a  chance of ending in the quadrant of S 0.25

within  of .45∘ hS

• If the trial ends up in the quadrant, it has at least a  chance of getting a true solution  from 0.5 y
the measurement.  The  can be verified by computing  deterministically.y R x, y( )

• Thus each random trial over  has at least a  chance of ultimate success.t 0.125

 
This argument is sloppier than it needs to be, but it's enough to conclude that a solution can be 
expected within a constant number of trials, regardless of the size of .  Thus the expected time to find S

a solution remains .  O N

 
 
Circuit Implementation and Problematic Aspects
 
The Grover oracle is deterministic except for the single Hadamard gate used to initialize the catalyst 
qubit to the difference state .  We do not have to re-initialize it, however, because the output after the d

evaluation remains .  The issue is the reflection about .  Done straightforwardly, it -1 ⊗ d( )R x,y( ) y mS

is heavy on the  gates, as evinced by the following example which can be created in Davy Wybiral's H
quantum web applet:  
 

 

 



 
Here the Grover oracle is  giving .  This is implemented as a multi-∧ x ∧ x ∧ ∧ xx⏨1 2 3 x⏨4 5 S = 01101{ }

controlled flip of the catalyst line (where a single  follows the ancilla  value) with  gates to make H 1 X
 and .  The initial bank of Hadamards on the first five qubits is to create the  vector on them.  The x⏨1 x⏨4 j

four other banks, however, are for the two reflections about .  The angle  is j 𝛼

 radians. The desired number of iterations is ; the diagram 1 /  =  0.1777...sin-1 32 = 4.42
𝜋

4𝛼
counts as 2.5 iterations.  This is close enough to show more probability accumulating on the string 

 on the first five qubits.01101

 
If we make a brute-force algebraic or logical simulation out of this, however, the Hadamard gates for the 
reflections give rise to  new variables.  The number of Feynman paths grows by a factor of more than 20

1,000 per iteration.  (This also causes major branching in the witness space for problem 3 on 
assignment 4.)  This growth would quickly choke the path-counting simulation written in C++ which I've 
demo'ed.  [Hence groverDemo is not yet coded.  The hope is to perform logical simplifications of the 
representation of the current quantum state so as to combine paths and reduce the branching factor, 
but results so far have not been promising.]
 
The multi-controlled  gate has its own element of excess.  Yes, OK, the Grover oracle in this case is Z
also multi-controlled, but one expects to expend more effort on it---and it could be a larger network of 
gates with only one control each.  The reflection about , however, really uses all the controls.  IBM j
researchers have found even the double-controlled Toffoli gate to be difficult to engineer, which is why 
their preferred basis consists of  , , and the  gate.  H CNOT T
 
 

 

 



Chapter 14: Qubit Representations, Physical States, and Operators
 
A qubit is a physical system whose state  is described by a pair  of complex numbers such that 𝜙 a, b( )

.  The components of the pair index the basic outcomes and .  There are two ways |a|  +  |b|  =  12 2
0 1

we can gain knowledge about the values  and :a b

 
• We can prepare the state from the known initial state  by known quantum e  =  1, 00 ( )

operations, which here can be represented by  matrices.2 ×  2

• We can measure the state (with respect to these basic outcomes), in which case:
– We either observe , whereupon the state becomes , or we observe , in which case the 0 e0 1

state becomes .e  =  0, 11 ( )

– The probability of observing  is , of getting  is .  Called the Born Rule, for Max 0 |a|2
1 |b|2

Born.
 
If both  and  are real numbers, then we can picture the qubit as a point on the unit circle in :a b R

2

 

If  then , so .   And  so .  Note that 𝜃 =
𝜋

3
𝜃 =  cos

1

2
|a|  =  0.252 𝜃 = b =  sin

2

3
|b|  =  0.752

 and .  What the measurement does is project onto the standard basis.  a =  𝜙 0 b =  𝜙 1

 
We can get different probabilities by projecting onto a different basis.  Note that
 

 =  ⋅ 1 +  ⋅ 1  =   =   =  0.9659...𝜙 +
1

2

1

2 2

3 1+

2

3

2

2.732...

2.828...

 
and squaring that gives just over .  Thus, this particular quantum state  gives a higher probability 0.933 𝜙

of one result when measured in the  basis---and a near-zero probability of the other result.  ,+ -
 
What happens to  after a measurement?  The full picture is much debated, but the local happening is 𝜙

clear:  becomes the basis state corresponding to the result obtained.  The fact that we---humans---𝜙
can elect to measure in a particular choice of basis will be a major component of quantum 
communication protocols and the CHSH Game on-tap later in Chapter 14.  The "election" part is as 

 

 

0, 1[ ]

1, 0[ ]a

b

a, b[ ]

𝜃

a|  +  |b|  =  1| 2 2

a =  𝜃cos

b =  𝜃sin
0

1

The qubit state  represents 𝜙 =  a, b[ ] ae + be  =  a 1, 0 + b 0, 1  =  a + b0 1 [ ] [ ] 0 1

(transpose notation omitted here)

+
-



easy as twirling a polaroid filter (if that is free will, mind you).
 
(1) That the particles' states become basis states in the particular measurement frame is shown by the 
Stern-Gerlach experiment.   In the setup, the measurable physical state "spin up" is denoted by  ↑

and can be treated like .  There is a distinct physical state called "spin down" and denoted by , 0 ↓

which plays the role of .  These are the only two distinguishable outcomes that manifest when a 1

magnetic field acts on the particle (relative to the orientation of the field; incidentally, "spin" is not-
rotation per-se).  Once a particle "chooses" between   or , that is its state upon going through ↑ ↓
a second Stern-Gerlach device with the same orientation.  
 

 
(2) But if the second device changes the orientation, then the particles once again behave 
nondeterministically with respect to the changed orientation.  This is shown more cheaply using 
polarizing filters, except for not being able to identify the particles (of light) individually.

 
The individual photons do not "lose mojo" after their orientation "collapses" onto the basis state.   It 
appears that way because of the physical fact that those photons giving the opposite outcome are 
absorbed by the filter.  
 

 

 

S

N

N

S

N

S

Source

𝜃

𝜃sin2 𝜃cos2

motion through filter

absorbed:
polarized up
entering light



 

In the second situation, the first filter produces light that is polarized up.  The second filter absorbs 

 of that light and the other  is passed through with diagonal polarization (analogous to  =  cos2 𝜋

4

1

2

1

2

the  basis state).  The third filter absorbs  again of that light.  Positioning the middle filter at any +
1

2

angle  between  and  allows  of the light from the first filter to go through.  This 𝜃 0
𝜋

2
𝜃 ⋅ 𝜃cos2( ) sin2( )

goes to zero as  approaches either  or  and is maxed for .   The Born Rule in action!𝜃 0 90∘ 𝜃 = 45∘

 
For most work with quantum circuits, we may suppose that a single measurement is taken at the end, 
and the output is read from the basis state  that is returned.  Or we may run a circuit multiple times, y
thus sampling  from the output distribution.  The principle of deferred measurement, which was y
seen in Chapter 6, makes this be "without loss of generality" in most computing situations---provided 
the measurement results are used only as controls for other gates.  Quantum communication protocols, 
however, require a fuller formulation of measurement via linear algebra.  This will come hand in hand 
with mixed states, which "are" classical probability distributions over unit vectors that are quantum 
pure states.  Doing this is facilitated by the Bloch Sphere representation of qubits. 
 
 
 
 
 

 

 

(none)

absorbed

absorbed

absorbed

absorbed absorbed



The Bloch Sphere
 
The previous (part of) lecture showed the limitations of the Cartesian picture for viewing even the 
simple computation .  So we will study one that gives a different picture of physical a, b  =  HTH[ ]T 0

reality.  
 
The first point is that the complex numbers  and  involve  real numbers, but the a = x + iy b = u + iv 4

requirement  imposes one constraint, thus essentially cutting the "real degrees of |a| + |b| = 12 2

freedom" down to .  A second factor cuts it down to .  The following definition will be useful for 3 2

quantum states of multiple qubits as well:
 
Definition: Two quantum states  are equivalent if there is a unit complex number  such that 𝜙, 𝜙' c

.  𝜙' =  c𝜙
 

For example,  is equivalent to , but neither is equivalent to , nor any of 1

2
-1, 1( ) 1, -1

1

2
( ) 1, 1

1

2
( )

these to our basic states  and .  In the line for the matrix ,  is simply equivalent to just 1, 0( ) 0, 1( ) Y ie1
,  to ,  to , and .  We could also regard  as equivalent toe1 -ie0 e0 -i𝜇 𝜇 i𝜋 Y

,iY =  
0 1

-1 0

which makes clearer that it is a combination of  and  (indeed, ).  Finally, to X Z iY =  ZX =  - XZ
finish the line for , . Z Ze  =  - e  ≡  e1 1 1

 
Regarding our saying equivalence, note that if , thenc = a + bi
 

,  =   =   =   =   = a -  bi =  
1

c

1

a + bi

a -  bi

a + bi a - bi( )( )

a -  bi

a  +  b2 2

a -  bi

1
c⏨

 
which is the complex conjugate of  and is likewise a unit complex number.  Since  the c 𝜙 =  𝜙'c⏨
relation is symmetric.  That the product of two unit complex numbers is a unit complex number makes it 
transitive, and being reflexive is immediate with , so this is an equivalence relation.c =  1

 
A unit complex number can be written in polar coordinates as  for some angle , which c =  ei𝛾 𝛾
represents a "global phase."  Thus, dividing out by this equivalence relation emphasizes the relative 
phase  of the two components.  So let us write our original quantum state  in polar coordinates as 𝜑 𝜙

 where now  are real numbers between  and .  Choose , then ae , bei𝛼 i𝛽 a, b 0 1 𝛾 =  -𝛼

 with .  Since , the value of  is forced once we specify .  c𝜙 =  a, bei𝜑 𝜑 =  𝛽 -  𝛼 a  +  b  =  12 2 b a

So  and  are enough to specify the state.  These are the  true degrees of freedom.a 𝜑 2

 
We can uniquely map points  to the sphere by treating  as a longitude and  (rather than ) as a, 𝜑( ) 𝜑 a2 a
a latitude where the north pole is , the equator is , and the south pole is .  Then the latitude gives 1 0.5 0

 

 



the probability of getting the outcome .  All states that give equal probability of  and  fan out along 0 0 1

the equator.  The north pole is  and the south pole is .  And again:0 1

•  is called , the "plus" state.1, 1  =   +  
1

2
( )

1

2
0 1 +

•  is called , the "minus" state.1, -1  =   -  
1

2
( )

1

2
0 1 -

 
Here they all are, graphed on the Bloch Sphere:

Among web applets displaying Bloch spheres for qubits is https://quantum-circuit.com/home (free 
registration required).  Here is its graph for the  state.  It is more usual to show the  axis out + x
toward the reader and  at right, but that is less convenient IMHO for picturing  and .y + -

 

 

x

y

z

𝜃

𝜑

|1⟩

|0⟩

|𝜙⟩

| − ⟩ | + ⟩

|𝜂⟩

Axis fixed
by H gate

a2

𝜇

𝜌

https://quantum-circuit.com/home


Some algorithms, however, are IMHO easier to picture using the original planar diagram in Cartesian 
coordinates:
 

 
For one thing, this makes it easier to tell that  and  are orthogonal vectors, that  and  are 0 1 + -

likewise orthogonal vectors, and that the orthonormal basis  is obtained by a linear ,+ -

transformation (indeed, a simple rotation) of the standard basis .  We will even use this to ,0 1

illustrate the CHSH Game.
 
A downside, however, is that this diagram gives extra points for equivalent space, whereas the Bloch 
sphere is completely non-redundant.  The Bloch sphere is also "more real" than the way we usually 
graph complex numbers via Cartesian coordinates.  In fact, every unitary  matrix  induces a 2 × 2 U
rotation of the Bloch sphere and hence fixes an axis, so the axes of the sphere are in 1-to-1 
correspondence with lossless quantum operations on a single qubit.  Whereas, the planar diagram 
gives a cut-down picture of how  acts as a rotation without fully showing you its axis.  H
 
The axis of the  gate goes through the origin and the point corresponding to the pure state H

.  With this vector, the latitude is That's the number  =  cos ,𝜂
𝜋

8
sin

𝜋

8
 =  0.85355339...cos2 𝜋

8
 

we got from the  computation.  Note: the latitude looks like it should be "3/4" but it's not.  The HTH

equator is  and the diagonal point is  of the way up from equator to the pole, so the latitude is 0.5
1

2

 as required.0.5 +  0.5  =  0.85355339...
1

2

 
 
Mixed States and Quantum States as Operators
 

A pure state of  qubits is one denoted by a unit vector in .  A mixed state is any linear n C
2 n

combination of pure states by non-negative weights that sum to .  That is, a mixed state is a classical 1

probability distribution over pure states.  Whether "mixed state" includes pure states depends on 
context; one can say "properly mixed" to exclude pure states.

 

 

 =  0, 11 ( )

 =  1, 00 ( )

 =  1, 1+ ( )
1

2
 =  1, -1- ( )

1

2

𝜅

𝜅'



 
For one qubit, every properly mixed state maps to a point interior to the Bloch Sphere.  This also holds 
for generalizations of the Bloch Sphere to higher dimensions for more qubits.  So let us have pure 
states  and probabilities  summing to .  Then, … ,𝜙1 𝜙m p , … , p1 m 1

 
p  +  ⋯  +  p1 𝜙1 m 𝜙m

 
is the "standard" representation of the mixed state.  We will see momentarily that, like writing  to 𝜙k

begin with, it may presume more than we can directly sense.  A philosophical question that comes first 
is whether a mixed state is a "thing", or just our lack of full knowledge about the state.  To appreciate 
this, we need to treat both pure and mixed states as operators and formalize more about how 
measurements are represented in any basis.
 
Definition: For any mixed state represented as , where the  p  +  p  +  ⋯  +  p1 𝜙1 2 𝜙2 m 𝜙m pi

are nonnegative and sum to , the corresponding density matrix is1

 
 .  𝜌 = p  +  p  +  ⋯  +  p1 𝜙1 𝜙1 2 𝜙2 𝜙2 m 𝜙m 𝜙m

 
Per the above philosophy,  is all we can know about the mixed state (aside from any prior knowledge 𝜌
from having prepared it).  The letter  tends to be used, without a ket or bra around it.  Some more 𝜌
facts:
 

1. Since it is a weighted sum of outerproducts, a density matrix is always Hermitian: .𝜌 = 𝜌*

2. The matrix designates a pure state if and only if ; note that this is automatic as shown 𝜌 = 𝜌2

above when .  m = 1

3. The results of measuring a mixed state can be computed by applying  as an operator to update 𝜌
the state.  By linearity, this is the same as working with each individual term and taking the linear 
combination.

 
For example, the mixed state obtained by averaging the two basis states is 
 

.0.5 + 0.5  =  0.5 + 0.5  =  0 0 1 1
1 0

0 0

0 0

0 1

0.5 0

0 0.5

 

This is not the same as .  Note that the square of the  =  ⋅ ⋅  =  + +
1

2

1

2

1 1

1 1

0.5 0.5

0.5 0.5

former martrix is , which is not the same and no longer has trace equal to .  The trace 0.25 0

0 0.25
1

 of a square matrix  is the sum of the entries on the main diagonal.  (We will later see a related Tr M( ) M
notion for non-square matrices.)  Whereas, the square of the latter matrix is itself.
 
[Lecture on 11/6/25 ended here.  Tuesday 11/11 will pick up with more examples of mixed states.]

 

 


