
CSE439 Fall 2025 Week 12: Measurements, Spectral Theorem, and the CHSH Game
 
The mantra becomes: Everything is an Operator.  Not just transformations, but quantum states and 
measurements too.  We cannot do all this with our seminal notion of unitary matrices.  The concept of 
Hermitian matrices, however, fills all the billings.  Via the Spectral Theorem, we will see that unitary and 
Hermitian matrices have a deep connection via eigenvalues.
 
 
Examples of Mixed States
 
We can consider any probability mixture of the  and  basis states.  The density matrix of the 0 1

mixed state  isp + 1 - p0 ( ) 1
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Note that  unless  or , so this is generally not a pure state.𝜌 = ≠ 𝜌2
p

p2 0

0 1 - p( )2 p p = 1 p = 0

 
How about ?  We get p  +  1 - p+ + ( ) - -
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In general, this is different.  But for the equal mixture , both density matrices are the same: p =
1

2

.  In terms of the Bloch sphere, both mixtures map to the exact center of the sphere, 𝜌1/2 = 
0.5 0

0 0.5

which is halfway down the axis between  and  at the poles, and also halfway along the 0 1

equatorial axis between  and .  In physical terms, that means they are the same state.  That + -
might come as a surprise, because:
 

One is defined as a spread between the outcomes  and , the other between the outcomes 0 1

 and .  Isn't that like saying one is apple vs. pear, the other orange vs. grapefruit?+ -
 
The ultimate point is that to probe the state, we have to choose a basis to measure against in advance.  
If we choose the standard basis, then to measure the probability for the outcome , even if we use 0

the  and  mixture, we still get+ -
 

P 𝜌  =  0.5  +  0.5   =   0.5   +  0.5  0 ( 1/2) 0 + + - - 0 0 + + 0 0 - - 0

=  0.5 ⋅  +  0.5 ⋅  =  0.5.
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Note that this associated the terms so that the fact that the  and  vectors are  aligned to 0 + 45∘

each other in Cartesian coordinates, likewise  and , came out as an idea.  But we can get the 0 -
point much more succinctly upon measuring any outcome  for :𝜅 𝜌1/2

 

 =   =   =  0.5  =  0.5  =  0.5.𝜅 𝜌1/2 𝜅 𝜅
0.5 0

0 0.5
𝜅 𝜅 0.5I 𝜅 𝜅 I 𝜅 𝜅 𝜅

 
That's it.  However we try to probe the completely mixed state , it just behaves like a perfect 𝜌1/2

unbiased classical coin.  Regardless of what we mixed to make it, there is nothing else that it is now.
 
 
General Measurements and Operators  [My 11/11/25 lecture cut down the parts in brown]
 
The triple product of a row-vector , a matrix , and a column vector  is just .  We will care x A y xAy

about the case where  is the "bra" dual of  and  is an outer-product matrix (or some other Hermitian x y A

matrix).  Let's write , where  and  are complex numbers such that   y = = a, b𝜅 [ ]T a b |a| + |b| = 1.2 2

Now consider the fact that the inner product of  with , i.e., of  but written it as the bra , 1, 0[ ] 𝜅 0 0

is just .  Meanwhile the inner product  gives .  Furthermore,a  ⋅𝜅 0 a*

 
 .a a =  ⋅ ⋅  =  ⋅  =  | |  =  |a|* 𝜅 0 0 𝜅 𝜅 0 0 𝜅 𝜅 0 2 2

 
What this says is that we projected the vector denoted by  onto the basis vector , and then took 𝜅 0

the magnitude of that projection.  Thus  represents the operation of projecting onto the  0 0 0

vector.  Moreover, look how it transforms the  vector:𝜅
 

.⋅  =  ⋅  =  1 ⋅ a + 0 ⋅ b  =  a0 0 𝜅 0 0 𝜅 0 ( ) 0

 

If we let  stand for the probability of  and divide through by  then we get just .  Oh p = |a|0
2 0 p0 0

wait, what we actually get is
 

.  ⋅  =  a  =  
1

p0

0 0 𝜅
1

p0

0
a

|a|
0

 

This might not be exactly , but it is equivalent to it since  is always a unit complex scalar.  That's 0
a

|a|

good enough.  Thus  updates the state when outcome  happens.  Similarly, 1

p0

0 0 0

 faithfully updates the state when outcome  happens.  Again, the point is how this 1

p1

1 1 1

works for any basis, not just the standard basis.  Let's see the general definitions first, then do things 
within the   basis, then use   to measure  as originally defined via .,+ - ,+ - 𝜅 a + b0 1

 

 



 
Definition: The projection operator associated to a pure state  is .𝜙 P  =  𝜙 𝜙 𝜙

 

Note that , so every projection operator is P  =  ⋅  =  ⋅  =  ⋅  =  P*
𝜙 𝜙 𝜙

*
𝜙

*
𝜙

*
𝜙 𝜙 𝜙

Hermitian.  More generally, we define:
 
Definition: A matrix  is positive semidefinite (PSD) if there is a matrix  such that .B A B =  AA*

 
Definition: A matrix  computes a projection if it is PSD and .P P = P2

 
By  we also haveP = P*

𝜙 𝜙

 
,P P  = P = ⋅  =  ⋅ ⋅  =  ⋅ 1 ⋅  =  P𝜙

*
𝜙

2
𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 𝜙

 
since  is a unit vector.  So  is indeed a projection and is PSD.𝜙 P𝜙
 
Definition: A projective measurement is given by a set  of projections such that P , … , P{ 1 m }

P  =  I.∑
m

i=1

i

 

From above,  is a projective measurement.  How about the  basis ,0 0 1 1 X

?  Using the numerics of the standard basis, we get:,+ + - -
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So  is a projective measurement.  Note that if we used the  coordinates to ,+ + - - ,+ -

begin with, then the numerics would be  and would come out literally identical, =+ +
1 0

0 0

likewise if we apply the measurement to .  (Note: the third from last line on page = a  +  b𝜅' + -

145 would be less confusing if it defined  this way rather than say  again.)  Using the standard-𝜅' 𝜅
basis numerics:

 

 



.= , + ,  =  a + b, a - b𝜅'
a

2
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2
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The triple product with  is:+ +

⋅ ⋅  =  a + b , a - b a + b, a - b = 2a , 2a𝜅' + + 𝜅'
1

4

* * * * 1 1

1 1
[ ]T

1

4

* * a + b

a - b

=  2a a + 2a b + 2a a - 2a b  =  4a a  =  a a =  |a| .
1
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* * * *
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* * 2

 
Similarly, we get .  That is a lot of rigamarole to replicate the answer we got ⋅ ⋅  =  |b|𝜅' - - 𝜅' 2

for measuring the original  in the standard basis.  The larger point is that the  vector with regard 𝜅 𝜅'

to the  basis has the same relation to it as  did to the standard basis.X 𝜅
 
However, when we expressly write rather than , then we are defining = a + b𝜅 0 1  = a, b𝜅 [ ]T

it in a way that is independent of a particular coordinate notation, and so it really is a different physical 
vector from .  To underscore the point (this is an example that should be on page = a  +  b𝜅' + -

146), let us measure  not  in the  basis.  𝜅 𝜅' X

 

⋅ ⋅  =  a , b a, b = a + b , a + b𝜅 + + 𝜅 * *
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=  a a +  a b +  b a + b b  =  |a| + |b| + a b + b a  =  +
1

2

* * * *
1

2

2 2 * *
1

2

c + c

2

*

 
where .  What happened?  The first thing to note is that the sum of a unit complex number  and c = a b* c
its conjugate is always a real number because the imaginary parts cancel.  Although in general the sum 
could be as big as  (or as low as ), because  arises as  where , the maximum 2 -2 c a b* |a| + |b| = 12 2

magnitude of  is .  Hence the probability of getting the outcome  stays within the range  c + c* 1 + 0, 1[ ]

as required for a probability.
 

In fact, if  then  and , finally giving that the probability of getting the outcome 𝜅 = + c =
1

2
c + c = 1*

 is .  And the probability of getting the outcome  is:+ 1 -
 

⋅ ⋅  =  a , b a, b = a - b , - a + b𝜅 - - 𝜅 * *
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with  as before.  This ensures that the probabilities sum to , regardless of what  is.  It is a nice c = a b* 1 c

self-study exercise to repeat this with the example .= ,𝜅
1

2 2

3

 

 



There is an essential symmetry of measurement as well.  If we instead did  then we ⋅ ⋅- 𝜅 𝜅 -

would get the same answer.  Indeed, for a general other pure state , the double action𝜙
 

P  = ⋅ ⋅  𝜅 𝜙 𝜙 𝜅 𝜅 𝜙

 

is a product of the form  where .  And  back again, so the productcc* c = 𝜙 𝜅 cc = c c = cc*
*

*
*
( )* *

 of a complex number and its conjugate is always a real number too.  Some interpretations:
 

• The only knowledge we can gain about a quantum state  (relative to any prior knowledge 𝜅
about how it was prepared) is by measuring it.

• All measurements of  go through the outer product .𝜅 𝜅 𝜅

• Hence , not , is the "unit of epistemology" (the origin of "episte-" is the idea of sending 𝜅 𝜅 𝜅
a message, i.e., an epistle).  This is a Hermitian operator and a PSD matrix with real entries and 
a projection.  All complex numbers have vamoosed.

 
This carries through when  is a state of multiple qubits, or of multiple qutrits, quarts, qudits 𝜅

(meaning -ary, as with card ranks where ), and so on, even going into infinite-dimensional d d = 13

Hilbert spaces.  The "real proof" of the principle, IMHO, comes from the extension to mixed states.
 
 
The Spectral Theorem
 
Theorem (split between theorems 14.1 and 18.1 in the text):  If  is an  Hermitian matrix, then A n × n
there are  real numbers  (not necessarily all distinct) and associated vectors  n 𝜆 , … , 𝜆1 n u , … , u1 n

forming an orthonormal basis, such that
 

.A =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
Furthermore, the matrix , which is then well-defined bye

iA

 
,e  =  e  +  e  +  ⋯  +  eiA i𝜆1 u1 u1

i𝜆2 u2 u2
i𝜆n un un

 
is unitary.  And for the converse: every unitary matrix arises in this manner.

 

 

 =  0, 11 ( )

 =  1, 00 ( )

 =  1, 1+ ( )
1

2
 =  1, -1- ( )

1

2

𝜅

𝜅'



 
Proof: The first part is by induction.  By the fundamental theorem of algebra, the characteristic 
polynomial  has  solutions over , counting multiplicities.  If there is only one distinct det A - xI( ) n C

solution , then  must equal .  By the Hermitian property ,  must be real, and we can get 𝜆 A 𝜆I A = A* 𝜆

 from any orthonormal basis of the A = 𝜆I =  𝜆  +  𝜆  +  ⋯  +  𝜆u1 u1 u2 u2 un un

space.  This is the base case.  Note also that for , the basis is unique.n = 1

 
So suppose  is one of at least two distinct solutions.  Then the subspace  of vectors  such that 𝜆1 W v

 is not the whole space---it has dimension  less than .  So let  be in and  in the Av =  𝜆 v1 m n x W y

orthogonal complement  of .  By the Hermitian property,W⟂ W
 

.⟨x, Ay⟩ =  ⟨Ax, y⟩ =  ⟨𝜆 x, y⟩ =  𝜆 ⟨x, y⟩ =  0*
1

*
1

 
Since  is an arbitrary vector in , this means that  always stays in the orthogonal complement x W Ay

, as well as  always staying within .  Hence we can argue inductively about  acting on  W⟂ Ax W A W
and on  individually.  This induction also concludes, as ultimately validated on hitting the base case, W⟂

that  is real, so , and this carries through to all other (distinct) solutions.  This process also 𝜆1 𝜆 = 𝜆*
1 1

builds othonormal vectors  such thatui

 
.A =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
Note that these are automatically eigenvectors, because 
 

Au  =  𝜆 u  +  𝜆 u  +  ⋯ +  𝜆 u +  𝜆 ui 1 u1 u1 i 2 u2 u2 i i ui ui i n un un i

=  𝜆 ⋅ 0 +  𝜆 ⋅ 0 +  ⋯ +  𝜆 ⋅ 1 + ⋯ +  𝜆 ⋅ 0 1 u1 2 u2 i ui n un

= 𝜆 ui i

 
(Well, this is because the notation  and just  is interchangeable.)  Moreover, if  has multiplicity ui ui 𝜆i

, i.e. is a unique eigenvalue in its eigenspace, then the associated unit eigenvector  is unique.  Now 1 ui

to show that is unitary, we note that its adjoint ise  iA

 

. =  e  =  e  +  e  +  ⋯  +  ee⏨⏨iA T -iAT -i𝜆1 u1 u1
-i𝜆2 u2 u2

-i𝜆n un un

 
This is because, as we've seen, every self-outerproduct  is Hermitian so those parts don't u u

change under conjugate transpose.  Finally, when we multiply by its adjoint, all of the cross-terms e  iA

cancel by the orthogonality of the  vectors, leaving only the products of like terms:ui

 
e e  +  ⋯  +  e ei𝜆1 u1 u1

-i𝜆1 u1 u1
i𝜆n un un

-i𝜆n un un

 
=  e e  +  ⋯  +  e ei𝜆1 -i𝜆1 u1 u1 u1 u1

i𝜆n -i𝜆n un un un un

 

 



 
,=  +  ⋯  +   =  Iu1 u1 un un

 
because  (etc.) and the  are unit vectors.  So is unitary. e e =  e = e = 1i𝜆1 -i𝜆1 i 𝜆 -𝜆( 1 1) 0 ui e  iA

 
For the converse direction, let  be any unitary matrix, and putU
 

 and , V =  U + U
1

2

* W =  U - U
1

2i
*

 
so that .  These are intuitively trying to be the real and imaginary parts of the matrix .  U = V + iW U
Partial success is attested by the fact that they are Hermitian:  and .  Moreover, V = V* W = W*

 because  and  both equal .  VW = WV UU* U U* I
 
Now a useful fact: Hermitian matrices  that commute can have the same orthonormal eigenbasis.  A, B
For intuition, suppose  has multiplicity  for  with unique unit eigenvector .  Take .  Then 𝜆i 1 A ui v = Bui i

.  Thus  is also an eigenvector of .  It need not be a Av = ABu = BAu = B𝜆 u = 𝜆 Bu = 𝜆 vi i i i i i i i i vi A
unit eigenvector like , but it must be a multiple of  because the eigenspace is one-dimensional.  So ui ui

 for some constant .  This constant can be different from , but it is an eigenvalue of Bu = v = 𝜇 ui i i i 𝜇i 𝜆i

 for the same eigenvector .  The general case of higher multiplicity is messier---and it is not the case B ui

that every orthonormal eigenbasis for  becomes one for , only that some orthonormal eigenbasis of A B
 carries over to ---but the basic reason it works is similar.  Therefore, we can write:A B

 
  andV =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

W =  𝜇  +  𝜇  +  ⋯  +  𝜇1 u1 u1 2 u2 u2 n un un

 
with different eigenvalues  but the same vectors .  So𝜆 , 𝜇i i ui

 
 .U =  V + iW =  𝜆 + i𝜇  + 𝜆 + i𝜇  +  ⋯  +  𝜆 + i𝜇( 1 1) u1 u1 ( 2 2) u2 u2 ( n n) un un

 
Thus each  is an eigenvalue of .  Since  is unitary, its eigenvalues have norm . Thus  𝜆 + i𝜇( j j) U U 1 𝜆j

and  are real numbers whose squares sum to , and they are therefore the cosine and sine of some 𝜇j 1

angle .  So 𝜃j

𝜆 + i𝜇  =  𝜃 + i 𝜃  =  e .   j j cos j sin j
i𝜃j

 
This means that we get a Hermitian matrix  such that  by takingA U = eiA

 
.        A =  𝜃  +  𝜃  +  ⋯  +  𝜃1 u1 u1 2 u2 u2 n un un ☒

 
 

Numerical Matrix Operations

 

 



 
One major application of the spectral representation of a matrix  (when  is Hermitian so it is A A
available) is in representing and executing numerical functions  as matrix functions .  We have f x( ) f A( )

seen this already with  as defining "phased exponentiation" .  This can be defined in f x = e( ) ix eiA

general given :A = 𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

 
.f A  =  f 𝜆  +  f 𝜆  +  ⋯  +  f 𝜆( ) ( 1) u1 u1 ( 2) u2 u2 ( n) un un

 
When  is a function involving addition and subtraction and multiplication only (i.e., is a polynomial f
function) then this is immediately evident: only multiplication needs a second thought, and it works 
because terms for different orthogonal eigenvectors ,  will cancel when multiplied.  Provided  and ui uj A

 are decomposed in the same eigenbasis, this works for two-variable functions  as well: if B f x, y( )

  andA =  𝜆  +  𝜆  +  ⋯  +  𝜆1 u1 u1 2 u2 u2 n un un

B =  𝜇  +  𝜇  +  ⋯  +  𝜇1 u1 u1 2 u2 u2 n un un

then 
.f A, B  =  f 𝜆 , 𝜇  +  f 𝜆 , 𝜇  +  ⋯  +  f 𝜆 𝜇( ) ( 1 1) u1 u1 ( 2 2) u2 u2 ( n n) un un

 
But the fun is that this works for just about any function .  A fortiori, this is because just about any f
function is approximable by polynomials. For example,
 

A  =   +   +  ⋯  +  -1
1

𝜆1

u1 u1

1

𝜆2

u2 u2

1

𝜆n
un un

 
(Wait a second---we saw that many Hermitian matrices, including ones from outer-products , 𝜙 𝜙

are not invertible.  So how can we do this??  Well, those matrices have  as an eigenvalue occurring at 0

least once.  So the above definition would try to do , which blows up.  So no contradiction here.) 1 / 0

 
This idea, plus using a polynomial approximation to the numerical function  that works on a needed 1 / x

interval bounded away from , is the jumping point for the HHL Algorithm for (approximately) x = 0

solving matrix equations by (approximate) inversion, as covered in Chapter 18.  Another example is:
 

. =  ⋅  +  ⋅  +  ⋯  +  ⋅A 𝜆1 u1 u1 𝜆2 u2 u2 𝜆n un un

 
For unitary matrices  that happen to also be Hermitian, such as the Pauli matrices and  and A CNOT

, this gives a way to compute square roots for them.  For example we can represent as:CZ CNOT 

 

.1 ⋅  +  1 ⋅  +  1 ⋅  +  -1 ⋅

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1

2
( )

0

0

1

-1

0

0

1

-1

1

2

 

 

 



To get a  matrix  such that  we just take square roots of all the eigenvalues.  We 4 × 4 B B = CNOT2

have a wide choice:  or  for the first there and  or  for the .  Using the positive signs gives+1 -1 i -i -1

 

B =  1 ⋅  +  1 ⋅  +  1 ⋅  +  i ⋅

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

1

2

0

0

1

-1

0

0

1

-1

1

2

 

=  +   +   +    

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

2

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

i

2

1 0 0 0

0 0 0 0

0 0 1 -1

0 0 -1 1

 

=   

1 0 0 0

0 1 0 0

0 0
1 + i

2

1 - i

2

0 0
1 - i

2

1 + i

2
 

This is the matrix of the controlled gate  where  is also written  and called CV V =  
1

2

1 + i 1 - i
1 - i 1 + i

X

1

2

the square root of NOT.  (The Wybiral circuit simulator calls it "SRNOT".)  Notice also that  is not V

Hermitian like  is---but that's OK since  is not an eigenvalue of this basis (nor a real number, either).  X i

 
[The 11/11/25 lecture basically got up to here; the converse of the Spectral Theorem was on Thu. 
11/13.  In that lecture, I did one more example, which follows next.]
 

Another Example: Let .  This is Hermitian but not unitary---in fact, it's not invertible.  A =  
1 -1

-1 1

It's not normalized in the sense of having  either, though if we divide it by  then it does Tr A = 1( ) 2

become .  Let's leave it un-normalized on purpose to see what happens.  Since it's not - -
invertible---indeed has rank one less than full rank---it follows that  occurs once as an eigenvalue.  0

The characteristic polynomial  [I usually use  to make fewer typos] is xI - Adet( ) A - xIdet( )

 so the other eigenvalue is .  It's easy to see that  is an eigenvector of x - 1 - 1 =  x - 2x( )2 2 +2 1, 1[ ]T

 and  so that  is an eigenvector of .  These eigenvectors are also orthogonal.  0 A ⋅ =[1
-1] [2

-2] 1, -1[ ]T 2

We do need to normalize the eigenvectors, so we get

 and  u = =1
1

2

1

1
+ u = =2

1

2

1

-1
-

after all.  Then

.A = 0 ⋅   +   2 ⋅  =  0 ⋅  =  2 ⋅u1 u1 u2 u2
1

2

1 1

1 1

1

2

1 -1

-1 1

 

 



 
It is tempting to simplify the constants, but we want to keep the actual eigenvalues separate.  To get a 

square root of , the second term needs to have  not .  That works since A ⋅2
1

2
[1  -1
-1  1] ⋅1 [1  -1

-1  1]

, so taking  makes .  To get the unitary matrix , we need A = 2A2 B = A
1

2
B = A = ⋅ 2A = A2 1

2
2 1

2
eiA

to keep the  eigenvalue separate too:0

 

.e  =  e ⋅  +  e ⋅  =  iA i⋅0 1

2

1 1

1 1
i⋅2 1

2

1 -1

-1 1

1

2

1 + e2i 1 - e2i

1 - e2i 1 + e2i

 
What the heck is  anyway??  Well, it's  where .  Not  degrees, but  radians, which is north-e2i ei𝜃 𝜃 = 2 2 2

northwest on the dial.  Not seeing  somewhere in the exponent is weird.  We can make it more 𝜋
general, and less weird, by observing:
 

Proposition: Every matrix of the form  is unitary.1

2

1 + ei𝜃 1 - ei𝜃

1 - ei𝜃 1 + ei𝜃

 
One can show directly that the top row has dot product zero with the complex conjugate of the second 

row and that each row has magnitude , which gets multiplied by  out front.  Note also that if 4
1

4

, then this becomes the matrix  in the previous example.  𝜃 = 𝜋 / 2 V
 
For a final remark, note that  commutes with ---well, everything commutes with the identity matrix.  A I
This exemplifies the statement in the paragraph about the "useful fact" in the second half of teh proof of 
the Spectral Theorem: if  and  are Hermitian matrices that commute, then they have a common A B
orthonormal eigenbasis, but not every orthonormal eigenbasis for  is also one for .B A
 
Speaking fairly generally, a projective measurement  can be associated to an orthonormal P =  P{ i }

n
i=1

eigenbasis for some Hermitian matrix.  When we apply  to measure a general (pure) state , we P 𝜙

"bonk it with the basis".  The measurement outcome is one of the  vectors, with probability ui

.  (Some sources further say that the associated eigenvalue  "is" the outcome.)  The fact | |ui 𝜙
2 𝜆i

that  lends definiteness to the measurement result---it stays the same under "repeated P  =  P2
i i

bonking."  Maybe this is what enables us to observe the measurement result to begin with.
 
(By the way, note that  is a general representation of a change of basis transformation.  B =  QAQ-1

But if  is notationally the identity matrix, then so is .  So the specification that  in the A B P  =  I∑
 

i i

definition of projective measurement does not lock us into the notation for the standard basis.)
 
Anyway, we can give a gentle partial disagreement with the Copenhagen interpretation by saying the 
original quantum state doesn't "collapse"---it just gets bonked.  The meaningful factor going forward is: 
what is the role of the choice of basis to bonk it with?  And is there free will in that choice? 

 

 



 
 
Trace, Density Matrices, and Measurements
 

When we do  for a quantum state vector , the diagonal entries  of the 𝜙 𝜙 𝜙 = a , … , a[ 1 N]T aia⏨i

outerproduct give , which equals  since  is a unit vector.  Since a density matrix  is a linear ||𝜙||2
2 1 𝜙 𝜌

combination of outerproducts  by weights summing to , the trace  is also 1.  Now when a 𝜙 𝜙 1 Tr 𝜌( )

unitary matrix  acts on , the density matrix of the resulting vector  isU 𝜙 U𝜙
 

. =  U  =  U UU𝜙 U𝜙 U𝜙 𝜙 * 𝜙 𝜙 *

 
By linear additivity, a unitary operator acts on a mixed state  by the double action .  Put all this 𝜌 U𝜌U*

together, and the rule is that the trace of a density matrix is always .  The action by unitary matrices 1

preserves the trace.  Ultimately this is just the idea of probabilities summing to .1

 
These ideas play into the most general idea of measurement on which there is wide consensus.  It 
generalizes the notion of a projective measurement of a pure state.  Recall that a positive semidefinite
 (PSD) matrix is one of the form  for some matrix .  M M* M
 
Definition: A positive operator valued measure (POVM) is a set  of PSD matrices such E , … , E{ 1 m }

that  (text has  there, is it a typo?).  Given a mixed state  the probability  of E  =  I∑m

j=1 j E E*
j j 𝜌 pj

outcome  is given byj
 

.p  =  Tr E 𝜌j ( j )

 
If a PSD representation  is specified for each  (it might not be unique, but specifying it is E  =  M Mj

*
j j j

part of the measurement apparatus) then the next state is

 .𝜌' =  
M 𝜌M

p

j
*
j

j

 

We can use this to answer a natural question: How does the mixed state  differ from the +
1

2
0 1

quantum superposition ?  Besides the different constant, there is a difference in  =  ++
1

2
0 1

meaning that dictates that when mixed states are involved, we really need to use the density matrix 

representation of both.  So we are really talking about  versus .  We have +
1

2
0 0 1 1 + +

that the former is 
 

+   =   
1

2

1 0

0 0

0 0

0 1

0.5 0

0 0.5

 

 



while the latter is

.  =   
1

2

1 1

1 1

0.5 0.5

0.5 0.5

 
Both matrices have trace ; the difference is that  hasd non-zero off-diagonal elements.  1 J = + +

Also , which is the definition of when a density matrix represents a pure state.  Now we know that J = J2

, which the density matrix under the double-action rogers:H =+ 0

 

,H H =   =   =   =  
0.5 0.5

0.5 0.5

1

4

1 1

1 -1

1 1

1 1

1 1

1 -1

1

4

2 2

0 0

1 1

1 -1

1

4

4 0

0 0
0 0

 
whereas 
 

H H =  HH =  I =  +
0.5 0

0 0.5

1

2

1

2

1

2
0 0 1 1

 
back again.  So whereas Alice would measure  with certainty if she applied Hadamard to , when 0 +

she does so to her mixed state she will still get  with only 50% probability.  The kicker is that if she 0

instead measures in the  basis, whether before or after applying the Hadamard gate, she ,+ -

will get those outcomes with 50% probability each.  Thus "a mixed state does not remember which pure 
states were used to define it."  The only reality it has---at least the only reality that we can know---is its 
density matrix.  
 
[Coverage for Prelim II stops here.]
 
 
Traceout and Spectral Purification
 
A further rule involving density matrices and tensor products starts from pure states  and .  𝜙 𝜓

Recall that the adjoint  is .  That is, we don't reverse the ( ⊗𝜙 𝜓 )* ⊗  =  ⊗𝜙
*

𝜓
*

𝜙 𝜓

product as we would with ordinary matrix multiplication.  The indexing is "tiered" in the form  state xy( )

where  pertains to the space of  ("Alice") and  to the space of  ("Bob").  So now involving x 𝜙 y 𝜓

outerproducts and running indices  over Alice's row space and  over Bob's:u v
 

.⊗ ⊗ uv, xy  =  ⊗ uv ⊗ xy  = 𝜙 u 𝜓 v𝜙 𝜓 𝜙 𝜓 [ ] 𝜙 𝜓 [ ] 𝜙 𝜓 [ ] ( ) ( )𝜙 x⏨⏨( )𝜓 y⏨⏨( )

 
Whereas,
 

,⊗ uv, xy  =  ux vy  =  𝜙 u 𝜓 v𝜙 𝜙 𝜓 𝜓 [ ] 𝜙 𝜙 [ ] 𝜓 𝜓 [ ] ( )𝜙 x⏨⏨( ) ( )𝜓 y⏨⏨( )

 

 

 



which is the same.  Note that the left-hand side of the second equation is the tensor product of two pure 
density matrices.  By additive linearity for tensor products, this proves the general rule:
 

The density matrix of two unentangled systems can be represented as the tensor product of 
density matrices of the respective systems.  In symbols: .  (Here we understand 𝜌  =  𝜌 ⊗ 𝜌A,B A B

identity up to multiplication by unit scalars.)  
 

A nifty point is that we can semi-invert this process even when Alice and Bob are entangled.  The 
operation is called the traceout.  It is easiest to picture and execute when we apply it to the second tier 
of the whole space, i.e., in "tracing out Bob."  It is also called the partial trace  mapping elements TrB

of the "higher space"  to the space .  Given the density matrix  of the whole system:A⊗B A 𝜌

 
• Block out  into square submatrices as-if it were a tensor product .  If Bob holds  qubits, 𝜌 A⊗ B k

then the submatrices will be . 2 × 2k k

• Replace each submatrix by its trace.  When you consider the submatrices on the main diagonal, 
you can see the overall trace is unchanged---it is still  as it must be for .1 𝜌

• The resulting matrix is the density  for Alice "after tracing out Bob."𝜌A
 
There is also a matrx  of Bob "tracing out Alice."  However, it need not follow that .  That 𝜌B 𝜌 = 𝜌 ⊗ 𝜌A B

happens if (and only if? the things that occur to you on the second pass...)  Alice and Bob were initially 
unentangled.  In that case, all of the "Bob" submatrices have trace .  The effect is the same---in the 1

case above where Alice and Bob are pure states---as substituting .  This leaves 𝜓 v = 𝜓 y = 1( ) ( )

, which is the  entry of Alice's outerproduct .𝜙 u( )𝜙 x⏨⏨( ) ux 𝜙 𝜙
 

Example 1: The traceout of the entangled state  is done by+
1

2
00 11

 

,Tr   =     =   B
1

2

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1

2

1 0

0 1

0.5 0

0 0.5

 
which is the density matrix of the completely mixed state again.  Notice incidentally that 

 gives exactly the same pure-state vector , even before we take its +
1

2
++ -- 1, 0, 0, 1

1

2
[ ]T

outerproduct to get the above  density matrix.  This all reinforces that Alice applying  or 4 × 4 H
whatever unitary operation on her half of the entangled pair has no effect on the current state of her 
knowledge of it, which is represented by the density matrix.
 

Example 2: The pure state  has the following density matrix:+ + -
1

2
000 001 110 111

 

 

 



1

4

 000 001 010 011 100 101 110 -111

000 1 1 0 0 0 0 1 -1

001 1 1 0 0 0 0 1 -1

010 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

110 1 1 0 0 0 0 1 -1

-111 -1 -1 0 0 0 0 -1 1

 
Notice that the two off-diagonal traces cancel.  So tracing out the third qubit leaves:
 

. =  
1

4

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

0.5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.5

 
This is not the density matrix of an entangled pair.  Nor is it even the completely mixed state on two 
qubits.  It is the mixture .  Its tensor product with Bob holding  is not 0.5  +  00 00 11 11 +

the same as the above density matrix---the corners stay zeroed out.  This is another indication that our 
original pure state is entangled.
 
[The Thu. 11/13 lecture ended here.  The Tue. 11/18 lecture will pick up here.] 
 
Whereas, if we use a  gate---or just a  gate on the second and third qubits---then the minus CCZ CZ

sign flips to make .  Now the pure density matrix is+ + +
1

2
000 001 110 111

 

1

4

 000 001 010 011 100 101 110 111

000 1 1 0 0 0 0 1 1

001 1 1 0 0 0 0 1 1

010 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

110 1 1 0 0 0 0 1 1

111 1 1 0 0 0 0 1 1

 

Tracing out Bob does leave the density matrix  of the pure state  in 1

2

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

+
1

2
00 11

 

 



Alice's hands.  And the whole system truly is ( .  Here is the + ⊗ +
1

2
00 11

1

2
0 1

quantum circuit, including the final  gate:CZ

 
The interpretation that might go with this is that the first two Hadamard and CNOT gates tried to 
entangle qubits 1 and 3 and then entangled 2 and 3.  The hope was that by "entangling 3 twice" we 
could actually disentangle it and leave 1 and 2 entangled.  This didn't quite work, but it does work if we 
apply the  gate after the second Hadamard gate.  The subject of entanglement swapping CZ
commonly needs 6 qubits to illustrate, but this gives some of the flavor at smaller scale.
 
One more notable fact:
 
Theorem: For every mixed state  on  qubits there is a pure state  on  qubits such that tracing 𝜌 n 𝜅 2n
out the last  qubits in  leaves exactly .n 𝜅 𝜅 𝜌
 
Proof: Because  is Hermitian, we can find an orthonormal basis  (where  as usual) 𝜌 u , … , u1 N N = 2n

and real eigenvalues  such that .  This gives a 𝜆 , … , 𝜆1 N 𝜌 =  𝜆 + ⋯ + 𝜆1 u1 u1 N uN uN

diagonal matrix in the coordinates of the eigenbasis, but we can apply a unitary change of basis  to U
make  diagonal in the standard basis.  Since we've seen that this double-action preserves the U𝜌U*

trace, which is  in , we get .   (Note how this says  is far different from a unitary 1 𝜌 𝜆 + ⋯ + 𝜆 = 11 N 𝜌

matrix, even a unitary matrix that is Hermitian, because those have each individual eigenvalue being of 
magnitude .)  Now define1

 

.𝜅 =  𝜆1( ⊗  +  ⋯  +  ⊗u1 u1 ) 𝜆N uN uN

 

This is a legal pure state because the squares of the amplitudes  sum to .  So let us apply the 𝜆i 1

traceout to .𝜅 𝜅
 
When we do  , we get cross-terms but they stay within each -qubit tier of the whole Hilbert 𝜅 𝜅 n
space---by the point we observed at the beginning of this section.  Within each tier, they have the form 

 with  (multiplied by ).  Now the main diagonal of this outerproduct is ui uj i ≠ j 𝜆 𝜆i j

, which is exactly the inner product .  This in turn is zero because  and  u k∑N

k=1 i( )u k⏨⏨⏨j( ) uj ui ui uj

are orthogonal.  So taking the trace of these ``Bob'' submatrices makes the off-diagonal components of 
the traceout vanish without a trace.  The only survivors are the terms 

 

 



 

.   =  𝜆u ⊗ u𝜆i i i u ⊗ u𝜆i i i i u ⊗ ui i u ⊗ ui i

 
Now tracing out "Bob" in these submatrices just substitutes  for the second , leaving1 ui

 
, 𝜆 + ⋯ + 𝜆1 u1 u1 N uN uN

 
which is the original  back again.  𝜌 ☒
 
There are other possible pure states on higher numbers of qubits that can do the same.  In Example 2 
above, we saw that the 2-qubit mixture   is the traceout of the 3-qubit pure 0.5  +  00 00 11 11

state , where we got the off-diagonal cancellations without needing + + -
1

2
000 001 110 111

to go to a full-blown spectral representation.  Moreover, the Bell pair  is exactly the +
1

2
00

1

2
11

 from the completely mixed state , which is already in spectral form.  The 𝜅 +
1

2
0 0

1

2
1 1

general name for this process is mixed-state purification.  It often happens that the neatest way to 
calculate or prove results about mixed states is to "lift" them to pure states in a larger space, calculate 
in the higher space, and then trace back down.  John Smolin of IBM T.J. Watson gave this technique 
the evocative name of "appealing to the church of the higher Hilbert Space."
 
 
Choosing Bases to Measure In
 
The question that concerned Einstein is whether Bob can send a willful message to Alice through their 
entanglement by choices of measurement bases.  My use of "willful" here is willful: pace quantum-
based arguments against free will, it is IMHO the clearest way to frame the technical argument.  All 
agree that Alice gains information of Bob's random outcomes, though that information was "pre-paid" by 
the interactions that set up  entangled qubits to begin with.  The point of superdense coding is that n
Bob could distinguish among  willful actions by Alice after the initial exchange of one entnagled qubit, 4

when it was followed by her sending  other qubit.  Can something like this be done without any further 1

interaction---and over time intervals shorter than the time for light to travel between Alice and Bob?
 
Most in particular, can Alice gain any willful information---other than unstructured randomness---from 

how Bob orients his measurements?  The answer is no.  If they share  (over ) you +00 11 2

might think Bob could guarantee a ' ' by measuring in the  basis, but no: that was the first 1 ,+ -
decoherence example with Alice.  Any basis Bob uses is the same as a unitary  to convert to the U

standard basis followed by a measurement there, and  has no effect on what Alice will see.U
 
This makes it all the more amazing that there are situations where the choice of measurement basis 
does make a difference---one that has been quantified in actual experiments.  This comes next.
 

 

 



The CHSH Game
 
The initials in the CHSH Game stand for John Clauser, Michael Horne, Abner Shimony, and Richard A. 
Holt, who described it in a paper in 1969. The 2022 Nobel Prize in Physics was awarded to Clauser and 
to Alain Aspect and Anton Zeilinger. The latter two experimentally confirmed the quantum advantage.
 

In the game, Alice and Bob share  Bell pairs  and can have as much prior classical n +
1

2
00 11

communication to agree on strategies as they please.  Between the start and end of a trial---one play of 
the game---they may not communicate with each other, but they may observe common sources.  The 
common source can not only be random---such as from patterns of solar flares both Alice and Bob can 
see---it can be controlled by an oracle "Ozzie" who is trying to help Alice and Bob.  Each trial operates 
via classical communication with a third party, "Ralph" (to sound like ref, referee) and goes like this:
 

1. Ralph sends a random bit  to Alice and a bit  to Bob.  Neither can see the other's bit.a b
2. Alice sends a response bit  to Ralph and Bob simultaneously sends his response bit  to Ralph.u v
3. Ralph declares that Alice and Bob win the trial if .u⊕ v =  a∧ b

 
We may suppose that Alice and Bob receive  and  in sealed boxes, and give their respective  and  a b u v
within a nanosecond of opening their boxes.  Without loss of generality, we may suppose that any other 
influence from observations or "Ozzie" has been registered by that instant.  At that point, Alice's  is a u
one-bit Boolean function of  alone.  We use  for the inputs to this function but give the outputs as Y a 0, 1

for "yes" or N for "no" in order to keep inputs and outputs visually separate.  There are just four 
functions that she can use:
 

• The always-true function: yes to  and yes to , which we call YY.0 1

• The always-false function, which we similarly call NN.
• The identity function, giving Ralph the same bit back, which is NY.
• Flipping the bit to Ralph, which is YN.  

 
Bob has the same four options, so there are in total 16 different strategies they can use for any trial.  
Meanwhile, Ralph has his own four possible actions.  Here is the entire matrix of possibilities.  The 
matrix entries are numeric rather than Boolean:  if Alice and Bob win,  if they lose.  The rows are the 1 0

four options by Ralph, in order  so that for instance, if Alice and Bob adopt the strategy in the third a, b
column and find that Ralph chose , then Alice says  while Bob says ---and they lose because 1, 0 N Y

their answers disagreed while  is false.  1 ∧ 0

 
Alice NN NN NN NN NY NY NY NY YN YN YN YN YY YY YY YY

Bob NN NY YN YY NN NY YN YY NN NY YN YY NN NY YN YY
0, 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

0, 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

1, 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

1, 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

 

 

https://en.wikipedia.org/wiki/CHSH_inequality


 
Note that when Ralph plays randomly, Alice and Bob can assure 75% winning if they choose any of the 
eight columns with three s as their joint strategy.  They cannot do better, because every column has 1

a case where Ralph could send them something that makes their joint strategy lose---and the 
randomized Ralph does so with 25% probability.  
 
The amazing fact is that sharing one entangled Bell pair enables Alice and Bob to do much better: to 
win over 85% of the time in theory.  
 
A side note if you are familiar with matrix game theory: could Ralph do better with non-random play if he 
knew Alice and Bob's strategy?  Certainly if Alice and Bob always play one fixed column, such as both 
always saying , then Ralph could always deny them by giving the one losing combination .  If you N a, b
know the Minimax Theorem of zero-sum matrix game theory, then you already know that because 
25% is Ralph's optimum when he has to move first, Alice and Bob must have a classically randomized 
strategy that assures them 75% even if Ralph is told about it in advance.  We can find it easily by first 
removing the eight "obviously stupid" joint strategies---those with only one  in their column---leaving:1

 
Alice NN NN NY NY YN YN YY YY

Bob NN NY NN YN NY YY YN YY

0, 0 1 1 1 0 0 1 1 1

0, 1 1 0 1 1 1 1 0 1

1, 0 1 1 0 1 1 0 1 1

1, 1 0 1 1 1 1 1 1 0

 
Now if Alice and Bob use their shared classical randomness to choose one of the leftover strategies at 
random with probability , there is no way Ralph can avoid their winning 75% of the time even if 1 / 8

Ralph knows that is their policy.  If Ralph could steal their random bits by looking at solar flares and 
knowing how and when Alice and Bob will decode them, then Ralph could still always send the bad 
combo.  But the order is: Ralph commits to the  combo first, then Alice and Bob have a moment to a, b
read the shared random source that determines their policies before they open their boxes.  The 
scientific significance does not require this detail---we just stipulate that Ralph plays randomly.
 
 
The Quantum Case
 
Alice and Bob get an extra option using one shared Bell pair per trial: Each can measure in a basis that 
depends on the bit received from Ralph.  The timing of this option is synchronized as viewed by Ralph.  
The text describes Alice as measuring first, but we'll make Bob go first for consistency with recent 
lectures.  By symmetry, it does not matter who goes first.  What does matter, technically, is that the time 
lapse from opening the boxes to the second measurement---as viewed by Ralph---must be less than 
the time it would take light to travel from Bob to Alice.  This is in order to avoid one of several possible 
"loopholes" that could enable a classical explanation.  
 

 

 



Rather than the Bloch sphere, this is a case where the Cartesian diagram of state vectors is best for 
visualization:  at east (E),  at north (N),  between them facing northeast (NE), and  to the 0 1 + -

southeast (SE).  Alice will use either the  or  measurement.  We ,0 0 1 1 ,+ + - -

let the former outcomes stand for "yes", so we can abbreviate her options as E or NE.  Bob has a 
funkier set of bases to choose from.  He can use the basis that orients his "yes" answer at , which 22.5∘

we call ENE for east-northeast, and puts "no" at  (or equivalently, at , i.e., ).  Or 112.5∘ -67.5∘ 292.5∘

Bob can use the basis that puts "yes" at , which is NNE for north-northeast.  Here is the protocol:+67.5∘

 
1. Alice and Bob open their boxes simultaneously.
2. If , Bob measures his entangled qubit in the basis oriented ENE; if , Bob chooses b = 0 b = 1

NNE.
3. If , Alice instantly chooses NE, else she chooses E.  No more than a nanosecond later a = 0

than Bob's actions, Alice measures her qubit in her chosen basis.
4. Each sends Ralph "yes" if getting the measurement outcome designated "yes", else "no".

 
The upshot can be appreciated ahead of any thinking about the underlying physical reality, just by 
looking at the diagram of the choices made by Alice and Bob in the four cases Ralph can send them:

Alice's chosen orientations depend only on her bit from Ralph: northeast on , due east on .  Bob 0 1

likewise reacts independently of Alice.  Yet the options combine to make their "yes" orientations come 
within  of each other in all of the , , and  cases from Ralph, yet  apart on .  22.5∘ 00 01 10 67.5∘ 11

 
If being one-fourth of a right angle apart meant a one-fourth chance of losing, then the resulting 
chances would be no different from the classical case: 75% frequency of winning.  But in ways we can 
actually see for ourselves by orienting polarizing filters at these angles and telling how much light gets 
through, in the first three cases, the chance of her qubit instantly transformed(?) by Bob's outcome 

giving the same yes/no answer from her -apart measurement is greater: . 22.5∘ = 85.3553... %cos2 𝜋

8

 And in the fourth case, the frequency of Alice and Bob giving different answers and winning is the 
same.  
 
 

 

 



Discussion
 
Well, saying "transformed" is exactly the kind of spukhafte Fernwirkung that Einstein objected to.  But 
this is the straightest path to expressing the explanation for what we observe---which has been verified 
in actual experiments achieving over 80%.  The gap between 80% and 85+% is ascribable in 
substantial part to the kind of slight-degrading errors we saw in the "depolarization and de-phasing" 
section (plus to other slight flaws in the apparatus and its nanosecond timing). 
 
Note that no "free will" is involved on the part of Alice and Bob, nor any contextual information ("hints 
from Ozzie") at all.  Their choices of measurement basis are determined entirely by the bit each 
receives from Ralph.  Their only agency is the sharing of entangled Bell pairs, possession of the 
measuring apparatus for their respective pairs of bases, and a mechanism for reading the bit from 
Ralph and effecting the corresponding basis choice.  Given a physical setup and timing so that their 
measurements are made within a picosecond of receiving the bit from Ralph and of each other, while 
"Alice" and "Bob" are situated more than a light-picosecond apart, Ralph is really playing solitaire.  And 
Ralph plays randomly, so no free will is involved there either.  Yet the resulting physical system "wins" 
with a frequency that cannot be explained by any classical theory with variables localized to "Alice" and 
"Bob" that obliviates the entanglements between them.
 
My section 14.7.3 replaces the element of Alice and Bob choosing different measurement bases with 
that of their choosing different basis-change operators, while always doing their actual measurements 
in the standard basis.  They apply these operators before (and only nominally after) doing their 
measurements.  This streamlines the physical interpretation, and yet yields the same basic math.  See 
also the chapter end notes for further discussion.  This should go hand-in-hand with the No-
Communication Theorem, but the Wikipedia treatment which I've linked goes a little further afield than I 
had in mind for the textbook.
 
Finally, this example avoids objections to earlier claims of "quantum advantage"---by which the Deutsch 
and Deutsch-Jozsa algorithms "unfairly" restrict the classical setting; Simon's algorithm is has a 
discrepancy between quantum and classical that is provable but only asymptotic; Shor's algorithm is 
proven but factoring might be in classical (random) polynomial time after all; and Grover's algorithm 
gives speedups only for running times that are exponential to begin with.   The ability to win more than 
the classical limit of 75% is concrete and experimentally proven.   The only knock is that the CHSH 
game is for an interactive protocol, not for straight-up computation.
 
Section 14.8 gives a claim of quantum advantage for straight-up computation, but it has come under 
more of a cloud since its October 2019 unveiling (see this article by me), and is for a contrived problem 
anyway.  We will instead seque into ideas for classical computing to take away the appearance of 
quantum advantage for straight-up computational problems.
 
 
Quantum Ontology and Epistemology
 

 

 

https://en.wikipedia.org/wiki/No-communication_theorem
https://en.wikipedia.org/wiki/No-communication_theorem
https://rjlipton.com/2019/10/27/quantum-supremacy-at-last/


Ontology has to do with being; epistemology with knowing.  We have taken the view that pure states 
"are"---that is, they have existence unto themselves.  We represent them as state vectors, but at 
exponentially high cost in many cases.  For properly mixed states , this is less clear.  We can regard 𝜌

some pure state  from a higher space that traces out to it as its ontology, but (a)  is far from 𝜅 𝜅

unique, and (b) as indicated by the use of " " in the proof of it, it often comes at exponential cost.  N
 
The epistemological side, however, has given a remarkably consistent set of answers for over a century 
now:
 

• The only way we can gain knowledge about a quantum state, whether pure or mixed, is by 
measuring it.

• All measurements of a pure state  go---explicitly or implicitly---through its density matrix 𝜙

.𝜌  =  𝜙 𝜙 𝜙

• Operations on density matrices "gibe" with measurements and probabilities in ways already 
prescribed by (Bayesian!) conditional inferencing.

• All scalar quantities involved in this reckoning are real numbers denoting (conditional) 
probabilities, not "amplitudes".

 
The last point is part of why Richard Lipton and I have mused about giving an account of quantum 
reality without complex numbers.  For the above, where Hermitian not unitary matrices are primary, 
complex numbers need only be seen in components of orthonormal eigenvectors , such as ui
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notion of phase seems inescapable, and complex numbers (IMPHO) give its best treatment.  There are 
wide indications that Bloch spheres---in higher dimensions as well as for single qubits---are physically 
real.  They give a description via two real numbers  and ; note that  is a probability, not an 𝜃 𝜑 𝜃cos( )

amplitude.  However,  is a phase angle and governs whether and where complex numbers appear in 𝜑
other figuring.  So Reality strikes back but doesn't completely subjugate the complex realm, which is 
necessitated by the Fundamental Theorem of Algebra anyway.
 
This finally leaves the super-skeptical question of whether there is a bedrock of being beneath what is 
knowable.  One form of this question is whether the notion of an observer---often styled as a conscious 
observer---is essential to existence.  This idea long predates quantum mechanics.  It was formulated as 
philosophical subjective idealism by the Irish Anglican bishop George Berkeley in the early 1700s, 
whom the city of Berkeley in California is expressly named after.  It is well captured by the following pair 
of limericks---my mod of what Fr. Ronald Knox wrote two centuries later:
 

A divinity student said, "God
Must find it exceedingly odd
That the Warden's plum tree
Continues to be
When there's no one about in the Quad."

 

 

 



And the reply as Knox imagined in a newspaper's Letters column:
 

"Dear Sir, your perplexity's odd.
I am always about in the Quad.
So the Warden's plum tree
Shall continue to be,
Since observed by---
      yours faithfully,  ---God."

 
Whether the advent of quantum mechanics enhances such arguments over the pervasive presence of 
an unseen benevolent God is not something I choose to amplify.  Lipton and I broadly sympathize with 
Samuel Johnson's reply of refuting Berkeley by kicking a stone---fully aware that the kick involves the 
exertion of quantum mechanical electric force on a surface whose solidity is effected by vibrating 
molecules.  Speaking for myself as a Christian, I hold a halfway position toward fideism that disclaims 
logical proof and reproducible knowledge of God, and I regard this as merely orthodox.  
 
There is, however, considerable reason to assert the pervasive presence of an unseen---and vaguely 
malign(?)---"Bob" in the form of entanglements with unknown systems, even going back to the Big 
Bang.  Entanglements with outside nature, developed both now and prior, are the current best 
explanation for decoherence.  The above illustrations of Tom Brady-style "deflation" in off-diagonal parts 
of density matrices are well representative of decoherence.  
 
Staying completely with "Nature's Rose", we will conclude with the matter of classical simulation of 
quantum algorithms, via advanced computational methods.  First on the list is the Singular Value 
Decomposition, which is the closest an arbitrary---not even square---matrix can come to the blessings 
of both unitary and Hermitian properties.
 

 

 




