CSE439 Week 13: Matrix Algebra and the SVD

What happens if we try to take the "inner product" of two m X n matrices A and B by first "unrolling'
them as vectors? Remembering to conjugate the entries of A, we get

(A,B) = Y, Al fIBIi, jl.

i=1,m
j=1n

Now let C = A*B. Since A" is n X m, this is an n X n square matrix. From

Clr,s] = Y, A°[r,kIBlk,s] = Y A[k, r1Blk,s]
k=1 k=1

we get that the diagonal entries of C are C[r, 7] = 2:1:1 Alk, r]B[k, r]. Hence the diagonal sum gives

Y. Clr,rl = Y, Alk 7IBlk, 1] = (A, B)
r=1 k=1,m
r=1,n

as we defined it above. The diagonal sum at left is called the trace, with notation T#(C). Now for a
vector v, the self inner-product (v, v) gives the squared Euclidean norm of v, written ||U||%, o)

[[v]l, = V{(v,v). The analogous concept for matrices is the Frobenius norm, named for Ferdinand
Georg Frobenius:

IAllF = A/Tr(A%A).

Or you can simply say it's the Euclidean 2-norm of the vector obtained by "unrolling" the matrix. This
norm, however, overstates the action of the matrix in Euclidean space, which involves its m1 X n
dimensions. This is

[|All, = sup{l||Av||,: vis a unit vector of length n}.

For some further remarks: Since our vectors are finite-dimensional, the "ball surface" of unit vectors is
compact, which actually means that there is a definite vector v that maximizes || Av||, rather than just
having a limit---so we can write "max" in place of "sup" for "supremum." The task of finding such a
vector v is the main algorithmic need of computing the singular value decomposition (SVD) as
treated below. It tumbles out of the SVD Theorem that ||A||, < ||A||r for every matrix A. But the
inutition is that || A||, tells the most that A can "stretch" a vector along the fixed dimensions it operates
on, whereas || Al is the maximum amount of "stretch" that the entries of A could give under any

configuration of dimensions.



The SVD

A matrix S is (pseudo-)diagonal if it is (non-)square and S[i, j] = 0 whenever i # j. It follows that both
5*S and §S* are diagonal square matrices. Some of the diagonal entries may be O.

SVD Theorem: For every m X n matrix A we can efficiently find:

« an m X m unitary matrix U,

« an m X n pseudo-diagonal matrix X with non-negative entries X[i, i] = o;, and

« an n X n unitary matrix V,
suchthat A = UXV". Furthermore, we can arrange that 01 > 0, > “*+ > Opin(m,n). @and in
consequence:

c AllE = /2,02

* Al = o1,

« A'A = VETU'UZV' = V diag(o}) V", and

« AA* = UZVVETU* = Udiag(o7)U",
so that the squares of the 0; and associated vectors give the spectral decompositions of the Hermitian
PSD matrices A*A and AA”, respectively.

The o; are the singular values. The number r of positive ones equals the rank of A. Whereas some
of the A; can be negative in the Spectral Theorem---when the Hermitian matrix is not PSD---none of the
0; is negative. The first ¥ columns of U form an orthonormal basis for the subspace W spanned by the
columns of A (called the column space of A), while the first ¥ columns of V form an orthonormal basis
for the column space of A*. The latter is identical to the row space of A when A is a real matrix---and
in that case, U and V' come out being real as well. The remaining m — r columns of U form an
orthonormal basis for the space W+, which is also the nullspace of A*. As with the Spectral
Theorem, the basis vectors are not unique when there is multiplicity or when we don't have r = m = n,
but the values ¢; are unique (when sorted in nonascending order, so we can say the matrix X is unique

too). Once U and V are specified, we get 2 = LAV too.

Proof: The procedure works by recursion through subspaces and so resembles the proof of the
Spectral Theorem. The first and top-level step is most emblematic. It begins by finding a unit vector v4
that maximizes ||Avq||,. Then o1 = ||Av]|, is the first and biggest singular value. It can't be zero
(unless A is the all-zero matrix, in which case we've "hit triviality"), so

AUl
U = —
01

is a unit vector. If there are more than one maximizing unit vectors v then we will get multiplicity, but let
us first suppose that the v; and associated 17 are unique. Before doing the recursion, we may



postulate that 11 is arbitrarily extended to an orthonormal basis LI; of C™ (or of IR™ in the real case)
and v; to an orthonormal basis V; of C". In the resulting coordinates, we get

. w}
UlAV1 = [Ol 1] = Sl
0 B
for some vector wq of length 7 — 1 and (m — 1) X (n — 1) matrix B. The red 0 stands for m — 1 zeroes
and is because Av; = 011, so there is no dependence on the other m — 1 coordinates. The goal is to
prove that w, must be all-zero too. Then recursing on B hammers out the (pseudo-)diagonal matrix X.
2 *
01 01 + wlﬂh
w1

Lethl

]. Ignoring the Bw part, we get
Bw1

as a column vector. Then S;w = w’' = [

[lw’|| = a% + wjw;. The right-hand side equals ||w||%. Dividing by ||w||, hence gives us

1151wl 5 n
— 2> ||w||]2 = o7 + wiws.
[zw]]

2

[1S1wl|2
Now if w1 is nonzero, then wiwl is a positive real number, so W > 01. Under the definition of
Wil

the 2-norm for matrices, this means ||S{||, > o07. But
1511l = [[UTAVq [l = [[All2

because U; and V; are unitary. And ||A||, = o4 by how we defined ¢;. This is a contradiction
saying "0; > 04." The only way out is for w; to be a zero vector.

The recursion then takes place on the perpendicular subspace of v, or in general, the perpendicular
subspace of the span of the orthogonal unit vectors v; chosen thus far. The final point is that the
corresponding vectors 1; also come out orthogonal. This is because, when 1 # j (and at stages where
o;and 0 are both nonzero---else we are in the base case of completing orthonormal bases on the
nullspaces):

O'Z'O']'<1/ll'|1/l]'> = <Oi1/l1'|0]'1/l]'> = <AUZ|AU]> = U;A*AU]' = 0;0]2?]]' = (7]2<'01'|U]'> = 0,

finally using the orthogonality of the v; vectors. The fourth equality happens because v; is an

eigenvector of A* A with eigenvalue 012' The reason given by the (short!) proof in the MIT notes
(https://math.mit.edu/classes/18.095/20161AP/lec2/SVD_Notes.pdf) is that

A'A = (Uzv?) (UuzZv?) = vETUrUZV* = VETEZVY,



which in turn converts to the way we have been writing the spectral decomposition since V' is unitary.

However, substituting U*U = [ strikes me as assuming what one is trying to prove about the u;
vectors.

To tie up the loose end, we choose to restart the proof. We apply the original Spectral Theorem to the
Hermitian PSD matrix A* A to get nonnegative eigenvalues A{, ..., A,--listed in nonincreasing order---
and orthonormal eigenvectors vq, ..., v, such that

A*A = M|vi){or| + -+ Ay (v, | = V'diag(Ai)V,

taking V' as the matrix with the eigenvectors as its columns. Now define o; to be the nonnegative
square root of A; for each i. Since the rank r of A equals the rank of A*A, we getg; > Ofori = 1tor.
For these 1, define

A’(Ji

Oj

u; =

Now the above demonstration that <u,-|u]-> = 0 is logically valid, because we arranged that 01.2 =A;is

an eigenvalue of A* A with eigenvector v; in advance. What we've lost, however, is the original proof's
definition of g; so that u; is a unit vector. We recover it, however, this way:

AUI'

Gl = (2

0j

AUI' 1 1
— ) = —v;A"Av; = —viAdv; = vjv; = 1
0

And u; is an eigenvector of AA* because

AUZ' 1 1
AA*u; = AA— = —A(A"A)v; = —Ac?v; = 0,Av; = olu.
(o} 0; 0;

For i > r, we can arbitrarily complete the basis by choosing orthonormal vectors that span the
nullspace.

So now the only thing we've "lost" compared to the first proof strategy is the fact that at the first and
each later step of the recursion, the choice of unit vector v; maximizes || Av;||,. However, now we can
appeal to the uniqueness of the A; and "quasi-uniqueness" of the eigenvectors up to the flex of
multiplicity. The squares of the ¢; and the A; must coincide. What comes out is a deep fact that the
largest eigenvalues of A*A naturally pick out the directions in which A stretches the most.

Corollary: For a square matrix A already of the form E*E (and that goes for any Hermitian PSD
matrix), the SVD and spectrum of E coincide with U = V.



Proof. The diagonal form E = UAU" has the specified properties; because E is PSD, the A; are
nonnegative, and we can arrange U so that the diagonal is in nonincreasing order.

In all other cases where A is diagonalizable, there are reasons for saying the SVD gives more
information than the diagonalization. This is especially so with upper or lower triangular matrices---see
example below. And of course, there are many square matrices that can't be diagonalized...to say
nothing of non-square matrices...for which the SVD is the only game in town.

Our two-pronged proof suggests two different algorithms for computing the SVD of a matrix A:

Av;
+ Diagonalize A*Atoget A;'sand V, then 0, = \/A; and u; = -

Ui.

« Find a unit vector v maximizing || Av||, and recurse.

Other methods come into play when A has certain particular features. Niloufer Mackey developed new
methods in her 1993 UB CS PhD dissertation under Patricia Eberlein. Other remarks:

* The version giving A = UX V" with U and V both unitary, is called the full SVD.

« When the m X n matrix A has rank r < min(m, n), then we can also do A = UXV" with X
being an r X ¥ matrix with positive values on the main diagonal, U being m X r, and V being
n X r. This is called the reduced or compact SVD.

« Some sources give a third version where U is m X r but X is r X n and V' is n X n (and unitary).
Let's call this the semi-reduced version.

Our proof and notes use the style of diagonalizing A* A, getting V from the unit eigenvectors v; of that,
and then getting u; = Av;, dividing by o; to normalize 1;. There is also a symmetrical style of

diagonalizing AA”* instead, forming its orthogonal unit eigenvectors as the columns of U, and getting V'
at the end. The nicely verbose applet

https://www.emathhelp.net/calculators/linear-algebra/svd-calculator/

does that. The most portable applets handle real numbers only, so they write A” instead of A* (or A™).
There are some Java applets that allow complex numbers (but | haven't tried them). They all have
limitations on m, n, and/or the magnitudes of matrix entries. The applet

https://www.omnicalculator.com/math/svd#is-singular-value-decomposition-unique

seems to do things the AT A way, with V first, but only does up to 3 X 3 and doesn't show intermediate
steps. There are also differences in output caused by not sorting the singular values in nonascending
order (so with the largest one at upper left) and the non-uniqueness of V and U.



Examples and Applications

In any upper or lower triangular matrix A, the elements of the diagonal are the eigenvalues. They are
thus independent of all the off-diagonal entries at upper right. Those entries have information that does
get picked up by the SVD. The two examples in the MIT notes are good for this.

Example 1:
Az[sol A*=AT=[34]
45 05
A*A=l9+16 20]=[25 zo] AA*=[9 12 ]=l9 12]_
20 25] |20 25 12 16+25] [12 41

a 0
b c

eigenvectors. This has no dependence on the entry b. How much A can stretch a (unit) vector does
depend on b. The SVD employs this information. We have

AA - \a* b*Ha 0] _ [a*a+b*b c*b] _

1" as one of the

Abstracting this, consider A = [ ] The eigenvalues are a and ¢ with [1,0

0 ¢ b c b*c cc

la|2 + |b|? Eb]
cb ]2 |

In the real case we can drop all the stars and bars. Then, solving det (A*A — xI) = 0 gives
0= (a>+b2-x)(c?-x) =b%c? = x* = (a®> +b*>+?)x + a’c2

The two solutions given by

1
x = E[az+b2+c2 + \/(az+bz+c2)2 - 4azcz]

do not simplify further in general. In the example a = 3, b = 4, and ¢ = 5, the expression under the

square root becomes 50% — 302 = 402, sox = %(50140) = 45 orjust 5. Notice also that
Tr(A*A) = |al?>+ b2 +c]> = 9+16+25 = 50 = Ay +A,.

The singular values are the square roots, so V45 = 3\ 5 and V5. The V matrix is formed from the

eigenvectors of A*A, so we solve:
l25 20] . lyl _ [25y+20,z _ [45y] [25 ony'l _ l25y’+202’] _ l5y'l
45z 120 25] [2 20y’ + 25z’ 52" |

20 25 z 20y + 25z




1 ! 1
This gives [y] = —[ 1 ] for the vector v and [y, ] = —[ 11 ] as one of a couple orthogonal

z V2| 1 z V2

choices for the vector v,. Then V becomes the Hadamard matrix. The U matrix is obtained by

normalizing the columns of AV. We can normalize l 30 ] . l 11 ] = [3 3 ] columnwise as

4 5 1 -1 9 -1
1/v10 3/v/10
310 -1/v10]

As a final check, UXV* =

A R B v P Y B Y

which equals A. We also get ||Al|, = \/gand [|Allp = V45+5 = 5\/5.

_\/11’0[; —31]

vals

To see that V' is not unique, we could have chosen [Z, ] = \Lﬁ[ _11 ] as the second eigenvector
instead. Thenwe'd get V = %l 1 _11 ] which Assignment 4 called the "Damhard matrix H,." The U
matrix changes too: it comes by normalizing each column of [ 3 0] . [ 1 -1 ] = [3 _3] to get
4 5 1 1 9 1
= %[; _13 ] Note that this V' is not Hermitian, so we have to remember to transpose it when we
do the check that UX V™ =
L[l —3] 3V5 0 [1 1] _ 1[3 —3][1 1l=1l6 o] _
V20|13 1 0\/5—11 219 1]l-11 218 10

0 -

1 1 ] so this V is another square root of the

as before. (Nor does V square to the identity; V2 = [

matrix B = —1Y.)

Low-Rank Approximation By SVD Truncation

Last, let's see what happens if we simply wipe out the smaller entry of X, which is 0, = \/g:



e RO

v RIS

ovs ofl1 -11 219 9] 145 45

2
Is the resulting A’ a reasonable approximation to A? Note that A’ stretches the first VV vector v; by the

111 113 1
same amount: A’— = — , whose 2-norm is —V/ 324192 — V45 = . But the second
\/5[ 1 ] V2 [ 9 ] V2 o1

dimension v, gets zeroed out.

We can also preserve the trace by using X" = [4?)/5 8 ] instead, which gives A" = |2 2] Then

A’vq over-stretches, but in other contexts it may give better results. Or we might prefer to preserve the
Frobenius norm by using X" = 15})/5 8] instead, conserving 07 + d5. Well, the whole

approximation idea looks better when the matrices are much larger to begin with.

(Pseudo-)Inversion and Numerical Instability

In the invertible 17 X 1 Hermitian case where we get orthonormal diagonalization A = UAU" with all

diagonal entries A; being nonzero, then using A’ = diag [Al) makes UA’U* = A~!. We can partly

i

emulate this for any matrix by taking the reciprocals of the positive singular values.

Definition: The (Moore-(Bjerhammer)-Penrose) pseudoinverse of an arbitrary m X n matrix A with
SVD A = UX V" is the n X m matrix given by A*™ = VEX*U*, where ™ transposes X and then
replaces every nonzero g; by 1/ ;.

If we specified that A = UX V" is the reduced SVD, then X would be an r X r diagonal matrix with
positive diagonal entries, and we would simply get A* = VX~1U". Saying it this way, however, would
hide a highly important "pseudo" aspect. You might expect that for sake of continuity, a zero o; would
be replaced by some large value, if not by (the IEEE representation of) inf. However, what happens

more often instead is that when ¢; < € for some threshold € (e.g., € = €g max(m, n, 01) where € is
the least positive hardware value), it is treated as zero and blipped---rather than put the large value

E = 1/¢€into the inverse. The rationale for this is that the dimensions and singular vectors associated
to small g; can often be "cropped out" with minimal effect---we will elaborate on this below. But such
cavalier blipping of large values E betrays the fact of numerical instability lurking in applications.

The pseudoinverse obeys the rule (AB)* = B*A™, and if A is invertible, then At = A~'. Thus

(a1 = (vzrur)' = (U) (z) v = (W) =V = uzve = A



back again, so this is a viable concept of inversion. However, AA™ = UXV*VX*U" reduces to

UXX*U" but not necessarily to the identity matrix---because zeroes can occur in ZX* from having
m < n even when all singular values are positive. It also obeys the rules:

« AATA = UXVVXTUUXV = UXX XV = UXV* = A;
« ATAAY = AT
« AAT and A" A are both Hermitian.

Indeed, A™ is generally the unique matrix obeying these rules. Here are some more examples of
SVDs and the resulting (pseudo-)inverses. Back to our 2 X 2 example:

a2

A:l?)ol:uzv*:Lll 3

45 Viol3 -1 o 4 |valt 1)
1, 1 1 1,
A+:V2—1u*=ill 1]3\@ Lll 3]: ﬁﬁll 3]: 3
Val1 -1 1 |[viol3 -1 1 1|3 -1] 7 |-4 1]
V5 30 10 15 5

which is the same as A1, Of course, A is invertible by virtue of being square and having nonzero
determinant, and we could have made life much easier using the adjugate formula

P ;[5 —4]T _ i[ 5 0]
det(4)l0 3 150 -4 3]

. , 00 0100 10
How about th do- f the matrix B = ? BIB = = . We get
ow about the pseudo-inverse of the matrix ll 0] [0 0“1 O] lo 0] ege
v = [(1)] with eigenvalue 1 and can choose v, = (1) (orthonormal to v4) for the eigenvalue 0. Then

uy = Boy = l(l)l while for 1, we choose an orthonormal vector since Bu, = 0; u, = [(1)] is the

natural choice. So we have U = [(1) (1)],2: [(1) 8] =X* and V = I. This makes
10101 01 10 . 00
Bt =VXtu = = . ThenB*B = hile BBt = )
u lo 0“1 0] [0 o] en [o olw e [0 1]

A Second Example, With Numerical Instability



0100 000O
Now let's try the second MIT notes example: A = 0020 . Weget ATA = 0100 . Then
0003 0040
00O00O 0009
0100 00O0O
V' is the identity matrix again while U = 8 8 é (1) and X = 8 (1) g 8 (ignoring the sorting
1000 0003
00 O 0 0001 0 O 0O O
order). So A" = VXtU* = 01 0 0 Looop_t1 0 0 O.And
001/2 O 0100 01/2 0 O
00 0 1/3 0010 0O 0 1/30
1000 00O00O0
ara = |01 00 e aar = |0 100
0010 0010
00O00O 0001

Regarding numerical instability, the MIT notes point out that if you make A[4, 1] a small value 6 so that
A becomes invertible, the eigenvalues grow by more than expected. With 6 = 1 /60000 the singular

. 1 i -1 —i
values stay 1, 2, 3, and 1 /60000 but the eigenvalues become {E’ 0’ 1o’ To

}, as seen at
https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/

The reason for using 60000 is that the determinant becomes (negative) 1/10000 = 1/10%, and that
neatly spreads a factor of 1 /10 among four eigenvalues. The fact that the eigenvalues have equal

magnitude is weird, given how the singular values match the sizes of the four positive matrix entries.

Applications to Solving Equations

Approximately Solving Linear Systems: When a matrix A is invertible, the solution to Ax = b is
x = A~'b. When A is not invertible, or not even square (thus denoting an overspecified or
underspecified system), we can still use Z = A™b as an "ersatz" solution.

How good a solution? It follows from the SVD theorem that ||Az —b||, < ||Ax —Db|| for all vectors x.

So this is the best approximation. When the system is underspecified, so that exact solutions exist, z
will be one of them---and moreover, all exact solutions have the form

z + (I - ATA)w

for arbitrary vectors w. This follows from the identity A*AA* = A" given in the "rules" above. Least
squares fitting is essentially the same process, since we are using the || - ||>-norm.



In some cases we can combine A and b into a matrix E such that Ex measures the error in an
attempted solution x. Then we want to find the z that minimizes ||Ez||,. This z is given by the column
of V' that corresponds to the least singular value. (If O is a singular value of E, so that Ez = 0, this just
means that z is an exact solution.)

Succinct Approximation

This IMHO is the "signature" application of the SVD and will lead us back to quantum computing.
Given a pseudodiagonal matrix X with 7 > k positive entries (in sorted order), define X to be the result
of zeroing out all but the k largest entries. If A has SVD UX V™, then define A, = UX, V™.

Eckart-Young-Mirsky Theorem: A; minimizes both ||A — B||r and ||A — B||, over all matrices B of
rank (at most) k.

The reason is that choosing the k largest singular values is both the way to maximize the sum of their
squares (relevant to the Frobenius norm) and the way to minimize the size of any leftover singular
value, i.e., of 0y, in sorted order (relevant to the 2-norm).

How good is the approximation? It depends on the size of 04,1, ..., 0, (and their squares) in relation
to the sizes of (the sum of squares of) the first k singular values. If the first k have the bulk of the
magnitude, then the approximation can be quite good.

Example: A = . Think of the rows as movies and the columns as users. Notice that

NN
O R R -
OO R -
oo o -
_o o =

[0 001 0
movie 1 is seen by everyone and user 1 is the most active. The emathhelp.net applet sorts the
singular values in reverse order, giving (rounded to five places):

[ 0.29257
0.72361
o 1.16633
1.33095

3.04287 |

This has one distinctly low singular value and another one under 1. Its SVD comes with



[ —0.48209
0.55100
~0.25405
0.34853
| 0.52722

0.76276
0.03548
0.49191
and
[ 0.55847
—0.63280
0.23554
0.15425
| —0.45650

0.30049
0.25146
—0.80265
0.35595
—0.27481

-0.38132
0.36318
0.37652

—0.23434 0.13187 0.44906
—0.34647 0.30727
—-0.01555
—-0.86833
0.36599

—-0.47362
-0.45976
0.15420
0.58213

—0.24803
—-0.36389
—-0.01845
0.42687 0.77478
-0.63143 0.45326

0.70258 |
0.50757
0.37687
0.31541
0.08507 |

0.62521 |
0.52155
0.39770
0.25885
0.33455 |

Now suppose we delete the two smallest singular values at upper left. Then we also don't need the
first two columns of U and V, the latter becoming the top two rows of V*. We first compute

[ 0.13187 0.44906 0.70258 | [ 0.15381 0.59768 2.13787 |
0.30727 -0.47362 0.50757 |[ 1.16633 0 0 0.35838 —0.63036 1.54446
—0.01555 -0.45976 0.37687 0 133095 0 ~ | -0.01814 -0.61191 1.14676
—0.86833 0.15420 0.31541 0 0  3.04287 ~1.01276 0.20523 0.95976
| 0.36599 0.58213 0.08507 | | 042687 0.77478 0.25885 |

Then multiplication with V™ gives
[ 1.12973 0.95339 0.89712 1.08212 0.88901 |
0.67261 0.70630 0.73754 1.04116 0.57612
A; ~ | 055827 0.38202 0.45161 0.77868 0.64955
0.16296 0.79370 0.75923 0.83976 —0.22538
| —0.19311 0.00810 0.24937 0.84951 0.16823 |
(1111 1]
11100
Is this a reasonable approximationto A=|1 1 0 0 0[? The first and last rows are good.
10001
00010)

The entry in row 4, column 5 is way off, as are some others. But overall, not too shabby? Another
reason this looks silly is that we not only need X ;. but the relevant elements of U and V' as well, which
are all more complicated numbers than A has. However, the total number of entries is

km +k? +kn as compared with mn entries in A.

When k < m, n this is a major savings. And when m, n are of order in the 1000s, k = 100 often gives

a nice approximation.




Image Compression Examples. Companies that store user views of media content may have
dimensions in the millions---and an even bigger motive to calculate with reduced dimensions. Then the
approximations reflect the relative popularities of movies and other media content---while over in the
column space of users, they indicate the patterns of frequent consumers.

We are most interested in compressing density-matrix representations of large quantum states.

Quantum Applications

(These notes draw on https://www.math3ma.com/blog/understanding-entanglement-with-svd)

First and simplest, SVD ideas give an easy way to tell whether a pure quantum state vector |qb> is
entangled. It finally leverages the relation between tensor product and outer product: Reshape |qb> into
the matrix A, that would occur if we really had [¢) = |¢ 1) ® |¢p) from qubits held by Alice and Bob,
respectively. Then we would have A = |4 ){¢ 3| be of rank 7 = 1. So:

|¢> is entangled between Alice and Bob if and only if A¢ has more than one nonzero singular
value. The number of nonzero singular values quantifies the entanglement.

For the simplest example, | ) = %[1/ 0,0,1]" gives Ay = %l (1) (1)

]. The matrix has rank r = 2.

So Alice and Bob are entangled.

The state %(6000 + ego1 + €110 — €111) gives the vector [1,1,0,0,0,0, 1, —1]" (ignoring the %). If Alice

1 1
holds the first two qubits, it re-shapes as 8 8 . This matrix has rank 2. But the state
1 -1
11
1 00 : : , .
5(eo00 + €oo1 + €110 + €111) becomes 0 0 which has rank just 1 and so is not entangled. ltis
11

| p>{+| with |¢p) as above. But if we gave Alice only the first qubit, then the shape would be
l 1100

0011
qubits 2 and 3.

]. This does have rank r = 2, so qubit 1 is collectively entangled with Bob's "system" of

Believe-it-or-else, the following theorem is equivalent to one on the syllabus of MTH 309, but not in our
present quantum context. We may gloss over the statement and proof, since the applications can be
understood by themselves.



Theorem: Let |q5> be a pure state in the product H 4 ® Hy of two Hilbert spaces of dimensions d 4

and dp, respectively. Then we can find orthonormal bases {|i,4> :0<isg< dA} of H4 and

{|iB> :0<ig< dB} of Hg and positive numbers oy, ..., 0,1 where r < min{d 4, dg} such that

r—1

9) = Dailia)lis).

i=0

It follows that Zioiz = 1 and that if we define p4 := Trp (|qb><q§|) and pp := TrA(|cp><qb|) , to be

the density matrices resulting from tracing out IHp, respectively tracing out IH 4, then

r—1 r—1
pa = 2302iadia] and pp= D 02|ip){in|.
i=0 i=0

The state | ) is separable over H 4, ® Hj if and only if this happens with ¥ = 1. Otherwise, | ) is
entangled with respect to IH 4 ® IHp, which is equivalent to Tr(pi) < landto Tr(plzg) <1

We've numbered from 0 because d 4 = 2" and dg = 2" are powers of 2 when we talk about "Alice"
holding m qubits and "Bob" holding 7 qubits, and while we've been numbering qubits from 1, we've
been numbering the standard basis from 0 to leverage the correspondence between binary strings and
binary numbers. It is less usual to number singular values from 0, but this serves to emphasize that we
may have exponentially many of them when m and n get large. Also bear in mind that the dimension of
H, ® Hy is d 4 - dg with times, not d 4 + d as it would be with an ordinary Cartesian product. The
whole representation is called the Schmidt decomposition of ).

To visualize the theorem statement, it helps to say what happens when |qb> really is a tensor product
|Ya)®|Yp)with [P 4) € Hy and |1Pp) € Hp. Then, as we observed when the parital trace

("traceout") was introduced in week 13, we get Trp (|qb><¢ |) = |2 ){¢a|and

Tra(|oX o) = |45 Y 5| Since we can trivially extend the pure state | {4 ) to an orthonormal
basis of all of H4 and |1,DB> likewise for Hg, we get the theorem conclusion by taking » = 1 and

oo = 1. Moreover, if the theorem conclusion happens with ¥ = 1, then we must have 01 = 1 to
normalize, and so we get p4 = |04 )0, | and pg = |05 ){03|, from which it follows (these being pure
states, so that p3 = p4 and p3 = pg) that [¢) = |04 ®|0p). This proves the conclusion about

entanglement illustrated above without having to invoke the SVD. But the general proof is really crisp
doing so.

Proof: The state vector of | ) has length d 4 - dp, so we can reshape it into a d 4 X dp matrix A as
done above---so that entry A, j] equals entry dgi + j of |¢) (again, numbering from 0). Take the



full SVD A¢ =: UX V" with U and V unitary and X in nonincreasing order. Then the columns of U form
the desired orthonormal basis for IH 4, the columns of V likewise for Hg, and taking r to be the rank of

A gives the reduced SVD representation A, = U,X,V; as well. Then X, is a diagonal matrix, so the

. . . r-1 . .
only nonzero terms uiaiv].T are those with j = i. So |¢) = Ei:O oiliay|ip) follows.

For the rest, the mere fact that |qf>> is a unit vector forces Ziaiz = 1. Now when we trace out Bob from

| p»{¢| under this representation we get a 1 entry left over from each of his submatrices on the main

diagonal only---but the o; becomes 01.2 in |p){¢|sowegetpy = 2:;; 01.2| iay{ia |- note that

Eioiz = 1 is exactly what's needed for this to have unit trace and so be a legal density matrix.

Likewise for p. The final fact is that whenever a sum of squares is 1, the sum of the corresponding
fourth powers is less than 1 unless the sum is just a single 1 and the rest zeroes.

A simple example that also resonates with our idea of truncating SVDs of quantum states is at
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/7/36891/files/2023/04/SchmidtDecomposition.pdf

Let |6 = [V17, V17, V125, v/ 125, /125, V125, /0.08, V0.08| . This s a pure state of a

3-qubit system we'll call Alice, Charlie, and Bob in that order. This state has the form |1/) ® | +) for
some 2-qubit state |¢> of Alice ® Charlie alone. However, we are going to group it the other way:
Hy = C? representing Alice by herself and [Hp = C* for Bob linked with Charlie. Is it separable that
way? Well, "reshaping" with two rows for Alice and four columns for IHp gives

V17 Va7 vazs Vaxs
\/125 V125 V0.08 Vo.08 |

It is easy to see that this has full rank---the second row is not a scalar multiple of the first row---so the
Schmidt rank is 2 and so |qb> is not separable as an Alice ® (Charlie+Bob) system. However, we will
develop a sense in which it comes weirdly close to being so. In passing, let us note that the other
reshaping,
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just as obviously has rank only 1, so |¢) is separable as (Alice+Charlie) ® Bob. The SVD of Ay is

relatively boring. But let's go ahead and do the SVD of A¢. The emathhelp applet actually allows
entering square roots explicitly:



Size of the matrix: 2 w | 4

Matrix:

sqrt(.17) sqri(.17) sqri(1/8) sqrt(1/8)

sqrt(1/8) sqrt(1/8) sqrt(0.08) sqrt(0.08)

The exact calculations get quite freaky with nested radicals, but the numerics come out the same as in
the first source. With r = 2 for the reduced SVD, we get:

0. 99985947 0

22 = l 0 0. 01676428

Wow: 0 has almost all the bulk. (These rounded numbers' squares sum to 1.0000000008325993 on
my Windows calculator.) This asymmetry isn't obvious if you just look at the U and V matrices:

U - lo. 7681475 0. 6402729]
0.6402729 0.7681475 |

V= [0. 5431623 0.5431623 0.4527413 0.4527413
0.4527413 0.4527413 -0.5431623 -0. 5431623

Yes, the squares of a column of U sum to 0.99999996823066 and squares in columns of V' sum to
0.99999993773396 on my calculator. Now let us truncate by zeroing out the 0. 01676428 entry. Since

we want to preserve the property that the sum of Giz is 1, we also replace 0. 99985947 simply by 1.

This also allows us to discard the second column of U and the second row of V*:

0. 7681475

0 6402729][0. 5431623, 0.5431623, 0.4527413, 0.4527413 ]

|p1) = UhZ, V] = [

= [0.417229, 0.417229, 0.347772,0.347772,0.347772,0.347772,0.289878, 0.289878].

Rounded to six decimal places, these entries' squares sum to 1.000000042586, so this is legal like
|qi)> = [0.412310, 0.412310, 0.353553, 0.353553, 0.353553, 0.353553, 0.282843, 0.282843] (also to
six decimal places). The differences in the second or third decimal place between entries of |q’)1> and
those of the original | ¢) are similar to how we truncated-and-rounded the singular values. But to
compare probabilities, we need the entries' squares, which are under the square-root signs in |cp1> =

| V174080, v/ 174080, V/120945, /120945, v/ 120945, v/ 120945, V084029, /.084029 |

versus the original [ V.17,V .17, \/.125, \/.125, \/.125, \/.125, \/0.08, \/0.08]. This is also not




bad. The property of "Alice+Charlie" not being entangled with "Bob" is clear when we reshape |¢1> as
0.417229 0.417229
0.347772 0.347772
0.347772 0.347772
0.289878 0.289878

since the columns are identical. For our drumroll conclusion---that Alice is not entangled wiyth
Bob+Charlie either---we also get separability under the reshaping

l0.417229 0.417229 0.347772 0.347772]
0.347772 0.347772 0.289878 (.289878

0.417229 0.347772
because = = 1.199720... So we have approximated the entangled state by
0.347772 0.289878

the completely separable state

_ [ 0.5543162 0.768148
97 = |0.839628] ® l0.64027zl ® [+).

The relationship to U and to one of the entries of V' (equality up to the six-place rounding) is striking.
Note also that the approximation did not affect Bob's qubit at all---it was separate and stayed separate.



