
CSE439/510 Week 4: Quantum Circuits (chapters 4 and 5)

The end of the last lecture set up how we will visualize series of quantum operations. The first point is
that despite all the complicated machinations when we calculate tensor products of matrices and
vectors, they represent merely the act of laying those operations side-by-side, each "in its own lane".
Two basic facts:

• The tensor product of two unit vectors is a always a unit vector.
• The tensor product of two unitary matrices is always a unitary matrix.

For the second one, suppose and are compatible matrix products. We can give indices A ⋅ B C ⋅D A

, give indices , give indices , and give indices . Then has indices i, j B j, k C ℓ, m D m, n A⊗C iℓ, jm
and has indices . Therefore is a compatible matrix product, and it B⊗D jm, kn E = A⊗C ⋅ B⊗D() ()

comes out with indices . The value of any particular entry isiℓ, kn

.E iℓ, kn = A⊗C iℓ, jm B⊗D jm, kn[] ∑

jm

()[]()[]

By definition of tensor product, and similarly for . So we getA⊗C iℓ, jm = A i, j C ℓ, m()[] [] [] B⊗D

.E iℓ, kn = A i, j C ℓ, m B j, k D m, n = A i, j B j, k C ℓ, m D m, n[] ∑

jm

[] [] [] [] ∑

jm

[] [] [] []

This in turn equals . Again by A i, j B j, k C ℓ, m D m, n = AB i, k CD ℓ, n∑

j
[] [] ∑

m [] [] ()[]()[]

definition of tensor product, this is the same as . So . (Note the AB⊗CD iℓ, kn()[] E = AB ⊗ CD() ()

distinction between the use of the comma for array rows-versus-columns versus not using a comma
when tensored coordinates are "rammed together.") The second fact then follows because if and A C
are unitary, then

.A⊗C()*(A⊗C = A ⊗C A⊗C = A A ⊗ C C = I⊗ I = I) * * () * * ()

We will often use this silently when itself is just the identity---a "non-gate" on one or more qubit C
"wires" running underneath the action of on "upper" wires---and vice-versa when is the identity. A A
Despite all the fuss in our notation, for Nature this just means running things side-by-side. Now we will
introduce the full formal notation for circuits of qubits and gates.

A First Quantum Circuit

At the end of the previous lecture, we did the computation of our basic entangled state:

.CNOT ⋅ H ⊗ I = ⋅() 00

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

= =
1

2

1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1

1

2

1 0 1 0

0 1 0 1

0 1 0 -1

1 0 -1 0

1

0

0

0

1

2

1

0

0

1

When we do a quantum circuit left-to-right, however, the part comes first on the left. The H ⊗ I()

symbol for a CNOT gate is to use a black dot to represent the control on the source qubit and ⊕

(which I have used as a symbol for XOR) on the target qubit. This is pictured by a quantum circuit
diagram:

If , then we can tell exactly what is: it is the state. And if , then . If x = 1 0 y + x = 1 1 y = -
 is any separate qubit state , then by linearity we know that . x1 a, b = ae + be() 0 1 y = a + b+ -

This expresses over the transformed basis; in the standard basis it isy

. a 1, 1 + b 1, -1 = a + b, a - b
1

2
(() ())

1

2
()

So we can say exactly what the input coming in to the first "wire" of the CNOT gate is. And the input to
the second wire is just whatever is. But because that gate does entanglement, we cannot specify x2

individual values for the wires coming out. The state is an inseparable 2-qubit state:

. +
1

2
00 11

If you measure either qubit individually, you get or with equal probability. This is the same as if you 0 1

measured the state . But that state is outwardly as well as inwardly different. When both qubits ++

to be measured, it allows and as possible outcomes, whereas measuring the entangled state 01 10

does not. I've seen papers telling ways to visualize entangled states of 2 or 3 qubits, but none
implemented by an applet so far---Quirk just shows Bloch spheres with the yellow dot at the center for
the "completely mixed state": . (Note that you can save quantum circuits directly into ¯ \ _ ツ _ / ¯ ()

URLs with Quirk---this convenience alone justifies the hassle of doing mental rotations and reversals to
read its little-endian output.)

Three Qubits and More

The CNOT gate by itself has the logical description and . This logical z = x1 1 z = x ⊕ x2 1 2

description is valid only for standard basis states. It means that if then , but if x = 01 z = x2 2

https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22]]}

 then . Since this description is complete for all of the standard basis inputs x = 11 z = ¬x2 2

, it extends by linearity to all quantum states. We can use this idea to x = x x = 00, 01, 10, 111 2

specify the 3-qubit Toffoli gate (Tof). It has inputs (representing the components in each x , x , x1 2 3

basis state) and symbolic outputs (which, however, might not have individual values in non-z , z , z1 2 3

basis cases owing to entanglement). Its spec in the basis quantum coordinates is:

, , . z = x1 1 z = x2 2 z = x ⊕ x ∧ x3 3 (1 2)

Of particular note is that if is fixed to be a constant- input, then x3 1

.z = ¬ x ∧ x = NAND x , x3 (1 2) (1 2)

or rather
z = x XOR x ∧ x = x XOR AND x , x3 3 (1 2) 3 (1 2)

if , then we get x = 13 1 ⊕ x ∧ x = ¬ x ∧ x = NAND x ∧ x .(1 2) (1 2) (1 2)

Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to
put and you gate two extra output wires that only compute the identity on (in x = 13 z , z1 2 x , x1 2

classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli
does is switch the 7th and 8th components of the state vectors). If you have polynomially many Toffoli
gates, then you get only polynomially much wastage of wires, and you can use the good ones to
simulate any polynomial-size Boolean circuit of NAND gates.

We need to say more broadly what it means for quantum computations to be (polynomially) feasible.
The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost. Gates
involving more qubits are OK if they can be built up out of the small gates. We have already seen that

 is just binary Hadamard gates laid out in parallel. The -qubit quantum Fourier transform can H⊗n n n

be built up out of smaller gates---this actually has more "fine print" than sources usually say and O n2

is pursued in the chapter exercises of the textbook.

We should describe measurements in more detail and see smaller-scale deterministic and randomized
examples first.

x1

x2

x3

z1

z2

z3

 000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

Quantum Circuit Examples

Theorem (cf. theorem 5.2 in section 5.3): Classical Boolean circuits can be efficiently simulated by
quantum circuits that don't even use any superposition or entanglement or randomness.

The proof is basically that the Toffoli gate simulates NAND via and NAND is a Tof x, y, 1 = ∨ () (x⏨ y⏨)

universal gate. The extra lines for the constant 1 inputs also make the whole computation reversible.
That is, is reversible. [RevNAND) ? (no, not Tof x, y, z = x, y, z⊕ ∨ () ((x⏨ y⏨)) x, y = x,() (∨ x⏨ y⏨
reversible)]

Here is a sizable example of this theorem. Consider the following circuit of NAND gates from the blog
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:

 Here is the corresponding quantum circuit:

a

b

c

0

0

0

0

0

0

X

X

X

a⏨

b⏨

c⏨

X

X

X
d

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
4--8 to , so0

that all qubits
except the last
keep their given
basis values.)

a

b

c

0

0

0

0

0

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/

Note also that the initial three gates effectively copy the Boolean values so that they can CNOT a, b, c

be negated as on the next three qubit lines. This is covered in section 6.2, and the last three , ,a⏨b⏨c⏨
qubit lines exemplify the trick in section 6.1 of using gates to effectively initialize them to NOT 1

rather than . Caveat: You can't copy an arbitrary quantum state using ---the No-Cloning 0 CNOT

Theorem mentioned in section 6.2 shows there is no way to do this in general. But particular states in
a known basis can be copied this way.

The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what
promises to take us beyond classical computing.

Circuits and Computations

Just like music can be divided into measures with a basic 'beat' unit, quantum gates going left to right
are timesteps of a computation. If multiple gates are underneath each other, then they make a single
tensor-producted operation---such as in the above diagram. If nothing happens on a certain qubit X⊗6

line at a given timestep, that is mathematically like tensoring with the identity matrix. A "squidgy" point
has to do with the nearest-neighbor aspect of tensor products. Consider:

There is notation for and , but not for " in the middle." We can ignore this I ⊗ CNOT CNOT ⊗ I I

problem. Or---and often this has to be done with real tech---we can suppose the Swap gate is applied
twice, e.g.

SWAP =

 00 01 10 11

00 1 0 0 0

01 0 0 1 0

10 0 1 0 0

11 0 0 0 1

a

b

c

a

b

c

a

b

a

a

b

a⊕ c

In such manner, we get the -qubit circuit as a compositionn

C = U ∘U ∘ ⋯ ∘ Ut t-1 1

of unitary matrices.N × N

Principle of Linearity: For any quantum state ,𝛷 = a e∑
N-1

i=0

i i

 .C 𝛷 = a Ce() ∑
N-1

i=0

i i

In words, the action of a quantum circuit on any quantum state is determined by its actions on the
(standard) basis states.

General Controlled Gates

Related to the gate is the controlled version of the gate. Recall . The CNOT Z Z =
1 0

0 -1

controlled version of any matrix (in the standard basis) is the block matrix A

,CA =
 0u 1u

0u I 0

1u 0 A

where the hierarchical quantum indexing scheme is also shown. If the first qubit is 0 then the effect is
the identity, while if it is , then the effect on the remainder is to apply . So1 u A

.CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

Although the control is nominally on the first qubit, with the effect on base states is to multiply the CZ

global state by if and only if both qubits are . Hence it is really symmetric between qubits---the -1 1

second qubit could equally be said to be controlling the first. The standard diagram for it is just two
black dots connected by themselves:

Since a general vector becomes after going through , it u , u , u , u[1 2 3 4]T u , u , u , - u[1 2 3 4]T CZ

follows, upon writing and , that= a , aa [1 2]T = b , bb [1 2]T

 .CZ ⋅ ⊗ = CZ ⋅ a b , a b , a b , a b = a b , a b , a b , - a ba b [1 1 1 2 2 1 2 2]T [1 1 1 2 2 1 2 2]T

Is this ever entangled, and if so, when? Note that if and are both , then a b 1

. CZ ⋅ ⊗ = CZ = CZ ⋅ 0, 0, 0, 1 = 0, 0, 0, -1 = - 0, 0, 0, 1 = -a b 11 []T [] [] 11

CZ = =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

1

2

1

1

1

1

1

2

1

1

1

-1

To try to represent this as a tensor product , we need both and to be ⊗ = eg, eh, fg, fhe
f

g
h

[]T e g

, so we are left with . This is easy to solve with and , or even since 0 fh = -1 f = 1 h = -1 f = h = i
we can use complex numbers.

But now let and both be . Then we get a b +

.CZ = CZ ⋅ 1, 1, 1, 1 = 1, 1, 1, -1++
1

2
[]T

1

2
[]T

Can this be given the tensor-product form ? We can ignore the factor. So the eg, eh, fg, fh[]T
1

2

equations become , , , and . The first three combine to give eg = 1 eh = 1 fg = 1 fh = -1

, so , but that contradicts the fourth equation . Thus is g = = h
1

e
fg = fh = 1 fh = -1 CZ ++

entangled.

We have exemplified a consequence that is important to bear in mind: Quantum operations do not
simply flip a switch between "entangled" and "separable". Whether the output is entangled need not
depend alone on whether the input is entangled or not:

It is possible for a quantum gate to leave one separable state separable while making
another separable state become entangled.

a

b

Graphs and Classical and Quantum Representations

Now gates are especially neat because they look like edges in a graph , specifically CZ G = V, E()

an undirected graph because the gates are symmetric. Let's first see some examples of graphs. The
cycle graphs have vertices (also called nodes) and edges connecting them in a ring, for . Ck k k k ≥ 3

The four-cycle graph has the following picture and adjacency matrix:

Note: This differs from the text only in the labels 3 and 4. This makes it maybe easier to see that not
only is not unitary, it isn't even invertible: rows 2 and 3, and rows 1 and 4, are identical. But:A

• is a real symmetric matrix, so it is Hermitian.A
• is a matrix of nonnegative entries each of whose rows and columns sums to , which makes A' 1

it doubly stochastic. This is an analogue of "unitary" for classical probability.
• In fact, for any regular graph, meaning that all vertices have the same degree , dividing the d

adjacency matrix by always gives a doubly-stochastic matrix.d
• We can in fact make a unitary matrix by flipping the sign of the two s at lower right and A'' 1

dividing by rather than by . This is, however, more of a coincidence than a general feature. 2 2

 The text shows that in the case of the regular prism graph (,), there is no sensible n = 6 d = 3

way to make it into a unitary matrix.
• The general way to encode graphs into quantum circuits via the gate yield much bigger CZ

underlying matrices---and some surprises. Here we go:

When put on four qubits, the first gate gives the matrix , which we know how to build: replace CZ⊗ I⊗ I

every entry of the matrix by the identity matrix, to get the matrixCZ 4 × 4 16 × 16

1 2

3
4

A =

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

A' = A
1

2
A'' =

1

2

0 1 1 0

1 0 0 1

1 0 0 -1

0 1 -1 0

x1

x2

x3

x4

: CZ⊗ I⊗ I = = diag

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

At far left I've put the labels of the underlying coordinates by the sixteen basis strings of length 4. The
point is that the entries go in all the places where the first two bits of the string are as shown in -1 1

pink. This is because the first gate is on the first two bits. Next, for the gate on qubits 1 and 3, we CZ
follow the same rule but for the coordinates where the first and third bit are :1

.: diag

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

1

1

1

1

1

1

1

1

1

-1

-1

1

1

-1

-1

 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

Here is the product of all four gate matrices that we get. I've "properly" put the matrix for the first gate
on the right now, but actually this doesn't matter---they are all diagonal matrices so they commute with
each other. To multiply them, we can just multiply the entries in each of the sixteen rows. The blue s 1

show cases where an even number of entries multiplied to give :-1 +1

: diag ⋅ diag diag ⋅ diag = diag .

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

1

-1

-1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

1

1

1

-1

1

-1

1

1

1

1

-1

1

-1

1

1

1

A word to the wise: The matrix for the fourth gate, which comes leftmost just above, is the tensor
product . The matrices for the middle two gates, however, are technically not tensor I⊗ I × CZ()

products, because one identity comes "between the two arms" of the gate. They are "morally" CZ

tensor products, though. The assigned exercise 4.11 makes a different case of this point. The rule

about places with two particular s, however, applies in all cases. And the surviving entries in the 1 -1

product at right mark four of the strings that gave exactly two s, the four corresponding to the edge set 1

 of the graph.E = 1, 2 , 1, 3 , 2, 4 , 3, 4{() () () ()}

If we apply our diagonal matrix to the all- unit vector, here1

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, = []
1

4
++++

then we get the column vector of the diagonal entries at right (again, divided by to normalize it). Does 4

that column vector faithfully preserve all information about the given graph? A question to ponder...

A graph-state circuit conventionally includes an all-qubits Hadamard transform before and after it:

[Fall 2025: Lecture will pick up here. MathCha allows moving things around for illustration's sake. I
think I've put them back the way they were to begin with. The relevant fact is that the gates all CZ

commute with each other, which is to say that it doesn't matter what order you list the edges in.]

Lecture reviewed the logic of the values in the 4-node graph state example above, and then added -1

an edge between nodes 1 and 4 to make:

x1

x2

x3

x4 H

H

H

HH

H

H

H

1 2

3
4

A =

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

The edge added in the middle inserted another diagonal matrix in the middle below. That in turn
updated the status of products of rows to product eight and eight values at far right:+1 -1

 diag ⋅ diag ⋅ diag ⋅ diag ⋅ diag = diag .

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

1

1

1

1

-1

1

-1

1

-1

1

-1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

1

-1

-1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

1

1

1

-1

1

-1

1

1

1

-1

-1

-1

-1

-1

1

-1

The final Hadamard transform effectively sums up the values in the rightmost column. Unlike above
when it was twelve to only four s, these cancel. The upshot (seen when doing this example on 1s -1

the Wybiral quantum circuit app at the end of lecture) is that the above circuit on input cannot give e0000

 as output. We will pay attention to which graphs do this cancelling and which do not. Let's say e0000

more about those Hadamard transforms...

General Quantum Circuits and Computations

If there are qubits, then the underlying matrices we get are with . It is much harder to n N × N N = 2n

handle -sized stuff than -sized stuff. Happily, we can always break the basic gates down to 2n n
constant size---3 at most with the Toffoli gate in practice---and there are theorems that guarantee
constant size gates working in general. One important case of using single-qubit gates is the n
Hadamard transform (times), which can be abbreviated :H⊗H⊗ ⋯ ⊗H n H⊗n

x1

x2

x3

x4

H

H

H

H

H

H

H

H

https://wybiral.github.io/quantum/

 , H = ⊗2
1

2

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

H = ⊗3
1

2 2

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

We always have the all-1 vector of length divided by H = = = ⊗n 0n +
⊗n

+n N = 2n

. Often this is the first step of a quantum circuit, for example: = = 2N 2n n/2

Putting the same Hadamard transform also after the edges of the graph creates the graph state G
circuit . One question we will soon address is whether on all- input can possibly produce all-CG CG 0

 output. The "possibly" part here involves randomized results coming from measurements, which 0

we will shortly define.

We will call an matrix that arises from a single small gate---or a tensor product of small gates---a N × N
succinct matrix. Thus a quantum computation of length is formally a composition of succinct s s
matrices applied to some input vector. The text draws allusion to a classical computation on a binary
string of length , such as , say. The quantum circuit starts with input the basis state x n x = 10100010

. We could actually start with but then prepare the state by making the = x 10100010 08 x
first column of the circuit be the tensor product

,X⊗ I⊗X⊗ I⊗ I⊗ I⊗X⊗ I

which has a NOT gate where has a . This is why we often suppose ("without loss of generality") that x 1

the circuit starts with the all-zero basis vector. Most quantum algorithms begin with a Hadamard
transform on all qubits anyway, thus "really" starting with the equal and completely superposed n

separable state .+
n

0

0

0

0

H

H

H

H

H

H

H

H

The and gates are the heads of an important family of basic gates having to do with rotations of Z CZ

phase, which is a curious but definitely physical property. When a complex number is rewritten x + iy
in polar form as , the angle is the phase. The magnitude is , so when we have a unit rei𝜃

𝜃 r r = 1

complex number. Note that itself is the same as since means phase. Then i ei𝜋/2 𝜋

2
90∘

 and if we put then . In Cartesian coordinates, . Here is i = e = - 12 i𝜋
𝜔 = ei𝜋/4

𝜔 = i2
𝜔 =

1 + i

2

some more geometry:

The vector is a funky unit vector. To see that it is a unit vector, note that u = a, b[]T

.||u|| = ⟨u, u⟩ = u ⋅ u = a a + b b = +2 * * *
1 +

2

𝜔⏨ 1 + 𝜔

2

1 -

2

𝜔⏨ 1 -𝜔

2

In polar form, the complex conjugate of is always , so . In Cartesian ei𝜃 e = e-i𝜃 i 2𝜋-𝜃() = e = 𝜔𝜔⏨ i7𝜋/4 7

coordinates,

 and = 1 + =
1 + 𝜔

2

1

2

1+i

2

+1+i

2

2

2
 = 1 - =

1 -𝜔

2

1

2

1+i

2

-1-i

2

2

2

So

 and . = 1 + =
1 +

2

𝜔⏨ 1

2

1-i

2

+1-i

2

2

2
 = 1 - =

1 -

2

𝜔⏨ 1

2

1-i

2

-1+i

2

2

2

Then

= + 1 + i + 1 - i = + 1 + 1 = 2 + 1 + 2 + 1 =
1+

2

𝜔⏨ 1+𝜔

2

1

8
2 2

1

8
2

2
1

8
2

2+

4

2

and

.= - 1 - i - 1 + i = - 1 + 1 = 2 + 1 - 2 + 1 =
1-

2

𝜔⏨ 1-𝜔

2

1

8
2 2

1

8
2

2
1

8
2

2-

4

2

These squared values add to as promised, so is a unit vector. How do we get it? Here is 1 u = a, b[]T

the start of an infinite family of gates:

, , , .Z =
1 0

0 -1
S =

1 0

0 i
T =

1 0

0 𝜔
T = 𝜋/8

1 0

0 ei𝜋/8

The controlled versions to go with are , , etc. They, too, are symmetric---indeed, all of these CZ CS CT

gates are controlled phase shifts conditioned on the basis-state of all of the (one or two) qubits 1

involved. (Here I must note global inconsistency and confusion in notation, especially about rotations,
which we will try to resolve when we cover the Bloch Sphere next week.)

Two other 2-qubit gates and their matrix and circuit representations are:

Here is a famous circuit equation (from this 1996 paper) that uses :CS

If we had to "go to the matrices" we'd be multiplying twelve matrices together. Happily we can 8 × 8

verify this for the eight standard basis vectors and then apply the principle of linearity to conclude that it
works for any three-qubit quantum state given as input. When given standard-basis vectors, it is
kosher to "reduce" controlled gates and then carry out further cancellations that result. But we can't
assume that non-standard-basis states pass unchanged through controls. [Lecture did the logic: If the
first qubit is 0, then the two "HZH" blocks go away and also the controlled S at far right. Because
SZS=I, those gates also cancel regardless of the second qubit. Then the bottom two H gates cancel.
The result is a no-op, like the Toffoli gate at left becomes. If the first qubit is 1 but the second is 0, then
the first controlled S goes away, but the first HZH turns the second qubit on, so that ZS is active on line
3. The second HZH flips it the second qubit back to 0, so again we have a no-op on the first two qubits.
But because the final controlled-S is active, we get ZSS on the bottom, which cancels---and then the
two H gates cancel leaving a no-op again. But if both top qubits are 1, then the ZS in the middle
disappears, but the other two S gates controlled from lines 2 and 1 are active. So we get HSSH = HZH
on the bottom, which flips the third bit exactly as Toffoli then does, while the first two bits stay 1.]

CS =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

CT =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝜔
S

T

https://arxiv.org/abs/quant-ph/9503016
https://bestboxedmattress.co.uk/blog/go-to-the-mattresses/

Outputs and Measurements

There are various conventions about what it means for a family of quantum circuits to compute a C[n]

function on , where is an ensemble of functions on and each computes . I f 0, 1{ }* f fn 0, 1{ }n Cn fn

like supposing that is coded in where depends only on and giving -many output f x() 0, 1{ }r r n Cn r
qubits separate from the input qubits, plus some number of ancilla qubits. (It is traditional, IMHO n m
weirdly, to consider that the primordial input is always and that for any other , NOT gates are 0

n x
prepended onto the circuit for those lines where .) i x = 1i

For languages, this means that the yes/no verdict comes on qubit . Many references say to n + 1

measure line instead. (Using a swap gate between lines and can show these conventions to 1 1 n + 1

be equivalent, but I prefer reserving lines to for potential use of the "copy-uncompute" trick, which is 1 n
covered in section 6.3.) Even for languages, however, one evidently cannot get the most power if you
need always to rig the circuit so that on any input , the output line always has a x ∈ 0, 1{ }n

(standard-)basis value, i.e., is with certainty or is with certainty. Instead, one must measure it, 0 1

whereupon the value is given with some probability , with probability . 0 p 1 1 - p

The math of measurements (at least of the kind of pure states we get in completely-specified circuits) is
simple. At the end we have a quantum state of qubits, counting the output and any ancilla 𝛹 n + r + m
lines. It "is" a vector where . Numbering in canonical v , v , … v ∈ C(1 2 Q) Q Q = 2n+r+m 0, 1{ }n+r+m

order as , an all-qubits measurement gives any with probability . If we focus on just z , … , z1 S zj |v |j
2

the output lines, then any occurs with probabilityr y ∈ 0, 1{ }r

. |v |∑

j: z agrees with y on the r output linesj

j
2

When and the sum is over all binary strings that have a in the corresponding r = 1 y = 0 zj 0

places. To simplify the notartion, let denote the probability of measuring on the output qubit line. px 1

The notion of uniformity is similar to that for ordinary Boolean circuits: it means that can be written Cn

down in (classical) time. We can finally define:nO 1()

Definition: A language belongs to if there is a uniform family of polynomial-sized quantum L BQP C[n]

circuits such that for all and inputs ,n x ∈ 0, 1{ }n

x ∈ L ⟹ p ≥ 3 / 4;x

x ∉ L ⟹ p ≤ 1 / 4.x

[Lecture ended with demos of a one-qubit circuit with three gates in the order HTH and then the above
two graph-state circuits on four qubits.]

