
CSE439/510 Week 5: Building and Visualizing Quantum Circuits

Computing Functions

Let us view the 4-qubit Hadamard transform as a big matrix:

We have argued that the Hadamard transform is feasible: it is just a column of Hadamard gates, one n
on each qubit line. There is, however, one consequence that can be questioned. We observed that a
network of Toffoli gates suffices to simulate any Boolean circuit (of NAND gates etc.) that computes a C

function . The Toffoli network actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 .F x , … , x , a , … , a = x , … , x , a ⊕ f x , … , a ⊕ f x(1 n 1 r) (1 n 1 ()1 r ()r)

The matrix of is a giant permutation martrix in the underlying coordinates. Yet if the Uf Cf 2n+r

Boolean circuit has gates, then we reckon that costs to build and operate. Now build the C s Cf O s()

following circuit, which is illustrated with and :n = 5 r = 4

H⊗4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v = -1⊗n[] ()u•v

1

4

What this circuit piece computes is the functional superposition of , defined asf

. = 𝛷f

1

2n

∑

x∈ 0,1{ }n
x f x()

The juxtaposition of two kets really is a tensor product, . The abbreviated form above is ⊗x f x()

"okayyy..." because and individually belong to the standard basis. The whole state , x f x() 𝛷f

however, is far from belonging to the standard basis, and it (IMHO) has several issues.

One of them is highlighted by Holevo's Theorem, which is not covered per se but can be given the
following informal statement:

A quantum state on qubits can store at most bits of classical information.n n

Let's think of this first about our -qubit graph states for -node graphs . (NB: Writing is n 𝛷G n G 𝛷G

OK but redundant since " " is not a basic attribute---likewise the ket in " " above just looks 𝛷G 𝛷f

"quantum-y".) can have up to edges. Thus itself can encode bits of G ∼ 0.5n
n

2
2 G 𝛩 n2

information, especially when the vertices are explicitly numbered . However, the graph state 1 … n

holds only bits. It follows that graph states are "lossy" for general graphs. They give full n = o n2

fidelity only for special classes of sparse or highly-regular/symmetrical graphs.

With , however, the state looks like attempting to store exponentially many bits of information about 𝛷f

the function ---as defined by its values on inputs . The sum has exponentially f 2n f x() x ∈ 0, 1{ }n

many terms. We can, however, get at most distinguishable bits out of the state from any n

measurement. This is commensurate with the fact that it is produced by a circuit of gates, O s + n()

especially when itself is s O n .()

0

0

0

0

0

0

0

0

0

H

H

H

H

H
Cf

https://en.wikipedia.org/wiki/Holevo's_theorem

Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the
creation of , instead of just for the Hadamard transform plus for the circuit. Or does the 𝛷f O n() O s()

fact of only gates mean that doesn't meaningfully reflect the exponentially many values O s + n() 𝛷f

taken by the function ?f x()

Let's ask this where the circuit is just a bunch of gates. On five qubits,Cf CNOT

computes the functional superposition

.
1

32

∑

x∈ 0,1{ }5

x x

This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++

states for -bit binary strings, including all the cases of where the binary strings and of length 10 xy x y

 are different. An analogy is that for any set of two or more elements, the Cartesian product of 5 A A

with itself includes ordered pairs with but , whereas the functional superposition is x, y() x, y ∈ A x ≠ y

like the diagonal of the Cartesian product, namely . The functional superposition is x, x : x ∈ A{() }

entangled, just as we first saw in the case .n = 1

If we replace the five gates by a subcircuit that prepares a general 5-qubit stateH

, = a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

then the five gates produceCNOT

.D = a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

0

0

0

0

0

0

0

0

0

H

H

H

H

H

0

This is not the same as , whose terms have coefficients for all and . IMHO the ⊗𝜙 𝜙 a ai j i j

notation or can be unclear about what is meant, though I've freely used etc. as 𝜙 𝜙 𝜙𝜙 ++

above. When is a basis element in the basis used for notation, then there is no difference: both x

 and have the single term with coefficient . ⊗x x D x xx 1 = 12

Feasible Diagonal Matrices (section 5.4)

We can continue the progression , , by Z =
1 0

0 -1
CZ =

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 -1

, ,CCZ =

1
 1
 1

 1
 1

 1
 1
 -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([])

and so forth. These are examples of a different kind of conversion of a Boolean function besides the f

reversible form called or above. This is the matrix defined for all indices byF Cf Gf u, v

.G u, v = f[]

0 if u ≠ v

-1 if u = v ∧ f u = 1()

1 if u = v ∧ f u = 0()

The above are for the -ary AND function. The stands for "Grover Oracle", though here I G AND n G

would rather emphasize that it is a concretely feasible operation. This ultimately leads to a theorem
whose statement doesn't appear until chapter 6:

Theorem (6.2): If is computable by a Boolean circuit with gates, thgen can be computed by a f s Gf

quantum circuit of gates.O s()

When is polynomial in , this makes a big contrast to being a -sized diagonal matrix. s = s n() n Gf 2n

We can also summarize a relationship to the previous definition of which was based on BQP

languages, i.e., on yes/no decision problems.

Theorem (not stated as such): If the language belongs to , then for every L = x, y : f x ≤ yf { () } BQP

 and all there are circuits of size (with as many output gates needed to write 𝜖 > 0 n Cn,𝜖 s n = n() O 1()

values for), the probability that correctly outputs after measurement of its f x() x ∈ 0, 1{ }n C xn,𝜖() f x()

output gates is at least . This is true for both the " " and " representations of .1 - 𝜖 Ff "Gf f

The nub of the proof is the---completely classical---fact that binary search using the language Lf

works in polynomial time even though there are exponentially many values to sift through. f x()

Universal Gate Sets

The above theorems allow us to solidify our intuition about the power of quantum gates.

Definition. A set of basic quantum gates is universal if every language/function in can be S BQP

computed by polynomial-sized circuits that use only gates in .S

Definition. The set is metrically universal if for every unitary operation on some number of S U m

qubits, and , there is a circuit on qubits using finitely many gates from such that for all -𝜖 > 0 C m S m

qubit quantum states , . (The norm is the sup-norm, aka. -norm.)𝛷 ||C𝛷 - U𝛷|| < 𝜖 ∞

Theorem. The following gate sets are universal:

1. Hadamard, CNOT, and . T

2. Hadamard and . CS

3. Hadamard and Toffoli.
The first two sets are metrically universal. The third is not---simply because it doesn't use any complex
numbers at all.

These facts are stated but not proved in the text; a key idea of the third is in the solved exercise 3.8 in
chapter 3. But given the third fact, universality of follows by the circuit equation for Toffoli H+CS

gates given before, because can be written as . And the simulation of by CZ CS ⋅CS CS

 could be homework... This doesn't prove metric universality, however. Indeed, the H+CNOT+ T
only source I know for gate set 2 being metrically universal is the exercise section of lecture notes by
John Preskill: https://www.preskill.caltech.edu/ph219/chap5_13.pdf (start on page 47). Those of you
who are sharp on logic may not be convinced that "metrically universal" implies "universal" the way I
worded it, because -errors on single gates might compound themselves when the gates are 𝜖

composed in a circuit---and also, how large is that "finitely many gates from " part when can grow S m

with rather than be fixed? The connection is enforced by the Solovay-Kitaev theorem and its efficient n

underlying algorithm, which shows that only extra overhead in gates is needed---not even n(log)O 1()

linear or polynomial overhead.

Another important fact to bear in mind is that the gate set is not metrically H,CNOT,CZ,X,Y,Z, S{ }
universal. Every circuit of these gates is simulatable in classical polynomial time. This is called the
Gottesman-Knill theorem. My graduated PhD student Chaowen Guan and I improved the running time
of this theorem in 2019 using a new analysis of (essentially) graph-state circuits. These gates and their
ordinary and tensor products generate the Clifford gate set. One other notable member is . V = HSH

 Note: . So is called the "square root of NOT" and is V = HSHHSH = HSSH = HZH = X2 V

https://www.preskill.caltech.edu/ph219/chap5_13.pdf
https://en.wikipedia.org/wiki/Solovay%E2%80%93Kitaev_theorem
https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem

also written as SRN or as SRNOT or as in various sources. Its matrix is . Note this X1/2 1

2

1 + i 1 - i

1 - i 1 + i

equals , and if you multiply it by the unit scalar you get the nicer-looking matrix 1

2

ei𝜋/4 e-i𝜋/4

e-i𝜋/4 ei𝜋/4
ei𝜋/4

. Like Hadamard, this is a source of quantum nondeterminism. Multiplying a whole unitary 1

2

i 1
1 i

matrix by a unit scalar, even by , is not considered to change the quantum operation it represents. -1

Thus, using does not really help us "break out" from the realm of the Pauli gates . Using S I,X,Y,Z T

does, however. We can get a taste by composing and . HTHT H* HTHT HTHT H* *

The most particular takeaway for (philosophical issues in) this course, however, concerns the extended
series of gates we've mentioned before:

, , , , , ...Z =
1 0

0 -1
S =

1 0

0 i
T =

1 0

0 ei𝜋/4
T =𝜋

8

1 0

0 ei𝜋/8
T =𝜋

16

1 0

0 ei𝜋/16
T =𝜋

32

1 0

0 ei𝜋/32

Can we really engineer these super-fine angles? By (metric) universality, we don't have to: we can
combine with (and , but only is needed for these particular gates) to emulate them. T H CNOT X

There is a web app for this. A useful technote: if you multiply by the unit scalar you getT e-i𝜋/8

.e-i𝜋/8 0

0 ei𝜋/8

This sets up some confusing nomenclature: itself, not what I've called , is often called "the T T𝜋/8 𝜋 / 8

gate". The web app calls this " " with . The Wybiral applet has "R2" as a redundant R 𝜃z() 𝜃 = 𝜋 / 4

name for , "R4" for , but at least gives "R8" for the gate .S T T𝜋/8

The Quantum Fourier Transform

Super-tiny angles are in the definition of the QFT itself. For any , it takes where n 𝜔 = en

2𝜋i/N

. With and , the matrix together with its quantum coordinates is:N = 2n n = 3 𝜔 = ei𝜋/4

https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22],[1,%22Z^%C2%BC%22],[1,%22H%22],[1,%22Z^-%C2%BC%22],[1,%22H%22]]}
https://www.mathstat.dal.ca/~selinger/newsynth/

The above " series"---and their controlled versions , gives us a recursive way to Rz CS,CT,CT , …𝜋/8

build the -qubit QFT using only unary and binary gates. This is already evident from the four-n O n2

qubit illustration in the textbook (where the two gates on the left are swap gates):

For the next bank uses , then uses angles of of a circle, and so on. Soon the n = 5 1 / 32 n = 6 1 / 64
angles would be physically impossible so the gates could never be engineered. But:

• The metric universality of says you only need to engineer "pieces of eight" for H+CNOT+ T
angles---and the Solovay-Kitaev algorithm shows you how to build the approximating circuits
with only extra multiplicative overhead. Such "polylog" factors are often ignored n(log)O 1()

under the notation of saying the whole simulation of the -qubit QFT needs only gates.n nO
2

• Doing this with instead needs only quarter-circle angles---that is, and .H+CS i -i

• With Hadamard + Toffoli the only angles involved are and . You wind up simulating the real 0 𝜋
and imaginary parts of QFT computations under two separate binary encodings.

I retain, however, a "meta-physical" objection that the inherent instability in tiny angles still infects these
circuits when attempts are made to engineer them physically and keep them free of noise. One can
cite LIGO as a supreme success case where tiny physical displacements are magnified and detected in
a roughly analogous manner. But that has a fixed physical limit of resolution, whereas the Shor's
algorithm application of wants to grow at least linearly with the overall problem instance size QFTm m

. Well, if the obstacle is actually physical, not just "meta-", it will entail the discovery of a new physical n
law that modulates quantum mechanics.

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1
001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i

011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j = 𝜔[] ij

https://en.wikipedia.org/wiki/LIGO

Maybe isn't impossible. We can show, however, that a simpler-looking task---one we take for QFTn

granted in classical computing---is really impossible in the quantum realm. This also exemplifies how
interpreting quantum circuits can be tricky unless you apply the principle of linearity strictly.

The No-Cloning Theorem

It's good enough to prove this in the case of copying one qubit in a two-qubit circuit.

Theorem: There is no unitary operation such that for any single-qubit quantum state 4 × 4 U

, .𝜙 = ae + be0 1 U 𝜙 ⊗ e = 𝜙⊗ 𝜙(0)

Proof: Suppose existed. Then and . So by linearity,U U e ⊗ e = e ⊗ e(0 0) 0 0 U e ⊗ e = e ⊗ e(1 0) 1 1

U 𝜙 ⊗ e = U ae + be ⊗ e = U a e ⊗ e + b e ⊗ e(0) ((0 1) 0) ((0 0) (1 0))

.= aU e ⊗ e + bU e ⊗ e = a e ⊗ e + b e ⊗ e = ae + be(0 0) (1 0) (0 0) (1 1) 00 11

But is supposed to equal , which U 𝜙 ⊗ e(0) 𝜙⊗ 𝜙

.= ae + be ⊗ ae + be = a e + abe + abe + b e(0 1) (0 1) 2
00 01 10

2
11

The only way these quantities can be equal is if . That boils down to saying that the only single-ab = 0
qubit states that can be copied are the two standard basis states. (Note that this is a much stronger
conclusion than the theorem stated.) ☒

And indeed there is a unitary matrix that can do this, namely . This leads to the next topic.4 × 4 CNOT

The Copy Uncompute Trick

Suppose we know in advance that at a certain point in a quantum circuit on a particular input (that C x

is to say,), some set of qubit lines will be in a standard basis state . Then we can insert ex r ey CNOT

gates between each of those lines and one of fresh qubit lines to make a copy of :r ey

If we then follow up with the inverse of , then we also restore the input lines to what they U* U x ⋯ x1 n

were:

Note: this works only when it really is true that the selected lines have separated basis state values at
that juncture. An example where it fails is with and , the circuit H 1 CNOT 1 2 H 1 which n = 1 r = 1

creates the operation we called . E

[Show H CNOT H example in Quirk (little-endian) (flipped).]

x1

x2

x3

x4

x5

x6

0

0

0

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
7--9 to , so0
that all qubits
except the last
keep their given
basis values.)

y1

y2

y3

y1

y2

y3

U

x1

x2

x3

x4

x5

x6

0

0

0

y1

y2

y3

y1

y2

y3

U U*

x1

x2

x3

x4

x5

x6

https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]],%22init%22:[1]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22X%22,%22%E2%80%A2%22],[1,%22H%22]]}

The Deferred Measurement Principle (section 6.6)

In a picture:

What this does is legitimize the policy of having measurements only at the end of a circuit.

U U

≡

An Interesting Unitary Operation

Let stand for the all-1s matrix of qubits. itself is . As an example with , Jn n Jn 2 × 2n n n = 2

J = 2

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

This is Hermitian but not unitary---far from it. Actually, it equals the outerproduct but ++ ++

multiplied by . If we write in boldface , then where . With this 4 J = n +n +n J = Jn
1

N n N = 2n

normalization, we have (ordinary matrix multiplication, not tensoring)

J = ⋅ = = ⋅ 1 ⋅ = J .2
n +n +n +n +n +n +n +n +n +n +n

n

(Math Jargon: this means is idempotent.) Now defineJn

,R = 2J - In n n

where is the identity matrix, same as the identity matrix tensored with itself times. In N × N 2 × 2 n

For we get:n = 2

.R = - = 2

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

1

2

-1 1 1 1

1 -1 1 1
1 1 -1 1

1 1 1 -1

Now we can verify that the matrix on the right is unitary. It resembles the matrix we earlier called but E

that had the entries going southwest to northeast instead. Now let's apply to a generic vector -1

u = a , a , a , a :[1 2 3 4]T

R u = 2J u - Iu = 1, 1, 1, 1 - u2 2

a + a + a + a

2

1 2 3 4
[]T

Is this unitary? Note: R = 2J - I 2J - I = 4J - 2J - 2J + I = I .2

n (n n)(n n) 2
n n n n n

So is a square root of the identity operator, and this is enough to make it unitary. Thus if we apply Rn

 a second time (and generally with), we get back again. Thus this is a reflection of around R2 Rn u u

the all-1s vector (that is, around). We will use a version of this in Grover's algorithm later.+n

Reckoning and Visualizing Circuits and Measurements (chapter 7)

There are basically three ways to "reckon" a quantum circuit computation on total qubits, :q Q = 2q

1. Multiply the matrices together---using sparse-matrix techniques as far as possible. If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠ P
must blow up at some (early) point. The downside is that the exponential blowup is paid early;
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how
more complex the gates become. This is often called a "Schrödinger-style" simulation.

2. Any product of -many matrices can be written as a single big sum of -fold products. s Q × Q s

For instance, if are four such matrices and is a length- vector, thenA, B, C, D u Q

.ABCDu i = A i, j ⋅ B j, k ⋅C k, l ⋅D l, m ⋅ u m[] ∑
Q-1

j,k,l,m=0

[] [] [] [] []

Every (nonzero) product of this form can be called a (legal) path through the system. [As hinted
before, in a quantum circuit, will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e = x0
r+m x0r+m 0

--and will be the first matrix from gate(s) in the circuit as you read left-to-right. Thus the D

output will come out of , which is why it is best to visualize the path as coming in from the top A

of the column vector , going out at some row (where is nonzero---for a standard basis u m um

vector, there is only one such), then coming in at column of , choosing some row to exit m m D l

(where the entry is nonzero), then coming in at column of , and so on until exiting at D l, m[] l C

the designated row of . This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect
to infinite-dimensional Hilbert spaces). The upside is that each individual path has size O s()
which is linear not exponential in the circuit size. The downside is that the number of nonzero
terms in the sum can be far worse than and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear
algebra---if possible!

For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized
"maze diagram" up-front but evaluating it Feynman-style. Well, the book only uses it for 1 ≤ Q ≤ 3
and I found that the brilliant Dorit Aharonov had the same idea. All the basic gate matrices have the

property that all nonzero entries have the same magnitude---and when normalizing factors like are 1

2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global factor in) i Y

give just entries or , which become the only possible values of any path. That makes it easier to +1 -1
sum the results of paths in a way that highlights the properties of amplification and interference in the
"wave" view of what's going on. The index values become "locations" in the wavefront m, l, k, j, i, …

as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.

One nice thing is that you can read the mazes left-to-right, same as the circuits. Here is the
 entangling circuit example: [Note: The mice are sometimes left in final positions, H + CNOT

sometimes in a startup or midway position, for what I demonstrated in lecture.]

No interference or amplification is involved here---the point is that if you enter at , then and 00 00

 are the only places you can come out---and they have equal weight. To see interference, you can 11
string the "maze gadgets" for two Hadamard gates together:

In linear-algebra terms, all that happened at lower right was giving . But the wave 1 ⋅ 1 + - 1 ⋅ 1 0
interference being described that way is a real physical phenomenon. Even more, according to
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse"
(which can be a photon after going through a beam-splitter). One of those universes has "Anti-Phil",
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they
fight to mutual annihilation.

Can we build any interesting things with just a few qubits? Yes, in fact. Even the simplest graph state
circuit---for a graph of just one node with a self-loop---is instructive to visualize.

00

01

11

10

00

01

11

10

input x = 00

-1

-1

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1

=

=

We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties? There is only one change from the "maze" for two -gates canceling, which was:H

The change is to insert a stage that again has a on the basis value but no "crossover":-1 1

This time, when "Phil" starts running from at left, the "mice" cancel at and amplify at 0 z = 0

. And on input they output the basis state . The result is Boolean NOT, i.e., .z = 1 x = 1 0 X

[Footnote: A basic outcome for the circuit on input has amplitude , not as z C x z UC x x UC z

I've once been guilty of writing. Perhaps the diagrams should write the bra-form, and and so 0 1

on, for at right to emphasize this. But we've identified the ket-form with the notion of "outcome"; this z

is the form that would be given as input to a further piece of the circuit. This dilemma is another reason
why Lipton and I first tried for a "handedness-free" approach.]

Phenomena of interest (tracing the "mice" is analogous to propagating a waveform):

1. Superposition
2. Amplification
3. Phase changes
4. Interference.

For graph state circuits of nodes we need qubits. The Hadamard transform of two qubits is 2 2

diagrammed as at left and right. It does not matter what order the two gates go in.H

H HZx1 z1

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1

=

=

0

1

0

1

input x = 0

-1 -1

input x = 1

-1

=

=

Note that the mouse running from encounters no phase change, nor mice ending at 00 00
regardless of origin. This simply expresses that the Hadamard transform (and the QFT too) have every

entry (divided by the normalizing constant) in the row and column for . We will focus +1 R = 2n 00

on the amplitude of getting as output given as input. If is the graph, the graph-state 00 00 G CG

circuit, and the unitary operator it computes, then the amplitude we want is . UG 00 UG 00

The simplest two-node has a single edge connecting the two nodes. This introduces a single G CZ

gate between the qubits standing for the nodes.

If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2

equivalent to . But with them, we get equal superpositions once again. Most in particular, the CNOT

amplitude of (=) is nonzero. [The lecture also noted how is 00 UG 11 11 UG 00 1, 1, 1, -1
1

2
[]T

a fixed point of , ignoring multiplication by the unit scalar .]H⊗2 -1

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1
?

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2

z2

Now let's try a graph that adds a loop at each node. We can call it the "Q-Tip" graph:

The phase shifts for the gates go on the basis states that have a on line 1 or 2, respectively. -1 Z 1

Now the amplitude value is negative. Its sign does not affect the probability and the state 00 UG 00

still gives an equal superposition.

It does not matter whether we put the gates "before" or "after" the . The diagonal matrices all Z CZ

commute, and this is clear from how the paths go straight across without branching. We could simply
make the whole graph into one diagonal gate with phase shifts that multiply the factors along each -1

row. A related thing to note is that if we repeat an edge or loop, then the two cancel completely. It's as
if we have a graph with edges defined by even-odd parity rather than number.

Now let's try a three-node graph, the triangle:

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2 z2

Z

Z

-1 -1

-1

-1

Z

For computing the amplitude it is not necessary to follow the "mice" through the 000 UG 000

Hadamard parts of the "maze". The mice entering the graph part from are all positive, and x = 000

the mice going to will not change color once they leave the graph. So we need only track z = 000

the middle portion and count how many mice are and how many are . For the triangle graph, the + -

answer is: four of each. They cancel. So . = 0000 UG 000

This leads us to more insight and a strategy for determining this amplitude for a general -node graph n

: G = V, E()

• Every basis state with corresponds to a 2-coloring of the vertices. Say a x x ∈ 0, 1{ }n 𝜒x

node is black (B) if , white (W) if . (The Greek letter (chi) looks like an and u x = 1u x = 0u 𝜒 X

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

H Hx1 z1

H Hx2 z2

-1

H Hx3 z3

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

B1

3

2

B
W

B

W

indeed is its capital form, but the Greek letter that sounds like English X is (xi) with capital . 𝛸 𝜉 𝛯

 The gives the ch in chromatic. Well, we can say that the binary string "is" the coloring .)𝜒 x 𝜒

• For any edge , the edge contributes a -1 in its gate if both and are colored B. u, v ∈ E() CZ u v
Call it a B-B edge.

• Therefore, a coloring gives a net contribution if it gives an odd number of B-B edges.-1 G

• The amplitude value is positive if fewer than (i.e., half) the colorings create 0
n

UG 0
n 2n-1

an odd number of B-B edges, zero if exactly half do, negative if more.

Whether one amplitude is positive or negative does not matter so much in quantum up to equivalence
under scalar multiplication. (My lecture demo'ed some examples.) But patterns of signs between
different amplitudes of possible outcomes may have further significance. az z z

Whether the amplitude is zero, however, is absolute. I call a graph "net-zero" if . G = 00

n UG 0
n

Above we first observed that the single-node loop graph is net-zero. The smallest simple undirected
graph (meaning no loops or multiple edges) that is net-zero is the triangle. Here are all such graphs up
to five vertices:

I do not see any simple way to tell "visually" whether a graph is net-zero. My recent PhD graduate

Chaowen Guan and I improved the known running time to decide this algorithmically from to O n3

whatever the time to multiply two matrices is (currently)). The algorithm works by n × n < O n(2.37286

converting the graph-state circuit into a quadratic equation of a kind that converts into a linear equation
in variables, whose solutions can be counted in yea-much time. But a simple, more-direct O n()
criterion for a graph to be net-zero could give a practically much better algorithm. Guan and I wrote
about this on the GLL blog at

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

Some generalizations of graph-state circuits can be handled with equal efficiency. We can simulate

 gates since is equivalent to . The extra gates take things outside CNOT CNOT i j H j CZ i j H j H

the realm of graph-state circuits as strictly defined, but keeps them within the class of so-called
stabilizer circuits, or equivalently, Clifford circuits, to which the same runtime < O n2.37286

applies (for getting any one amplitude, that is). The gates allowed in these circuits are , , , H CNOT S

, , , , but notably not , , or . Or for that matter. But there are other tweaks that X Y Z CZ Tof T CS CCZ

seem to be easy to bring within our framework, yet yield hard problems. Consider:

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

The only change was in the middle column, removing the from the row for . The middle -1 011

column now "fires" only when all 3 bits are , i.e., for the component of in any state. This is the 1 111

action of the double-controlled -gate, (which is really a triple control of a phase shift). It is Z CCZ 180∘

easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge by the hyper-edge , thus creating a 2, 3() 1, 2, 3()

hypergraph. The effect of changing only the color of the mouse in row 4 (for) may seem small, 011

but it has a wild effect on the state vector. Now has positive paths from instead z = 000 5 x = 000

of 4, so its amplitude is . Six other components have amplitude , and they collectively have =
5-3

8

1

4

1

4

7

16

of the probability. The other one, for , has positive paths to negative, and so amplitude 100 7 1

 which squares to . Note that the previous amplitude was which squares to just , =
7-1

8

3

4

9

16
=

6-2

8

1

2

1

4

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

H Hx1 z1

H Hx2 z2

H Hx3 z3

so flipping just one path of eight made a difference to the probability, more than one might expect. 5

16

The gate could likewise be in any order---the gates commute so there is no element of time CCZ

sequencing until the final bank of gates. The middle part is "instantaneous."H

This little illustration of wildness sits over a more general point. The equation resulting from having the

 gate changes from quadratic to cubic. Counting solutions to this kind of cubic equation is -CCZ NP

hard. In fact, sandwiching the gate between two gates (on any one qubit line) gives the Toffoli CCZ H

gate (with target on that line). So goes outside the Clifford ambit and gives a universal gate set. CCZ

What About Measurement?

Let's say we measure qubit 1 (big-endian). There is a 1/4 chance of getting the result 0 and 3/4 chance
of getting 1. If we measured all the qubits, we would see a 9/16 chance of getting , 1/16 each for 100

, , and . But when we measure just one qubit, the rest of the state stays superposed. Which 101 110 111
part is "the rest of the state" depends on the outcome of the measurement. In this case:

• If the outcome is , the new state on qubits 2 and 3 is . Equal weight superposition 0 1, 1, 1, 1
1

2
[]T

with positive signs
• If the outcome is , then preserving the relative amplitudes the gives . (Or 1 3, -1, -1, -1[]T

, which has the same ratios of amplitudes .) To renormalize this, divide by the -3, 1, 1, 1[]T

square root of , which is twice the square root of . The state also equals 12 3

.1.5, 0.5, 0.5, 0.5
1

3
[]T

Heres's a challenge : Can we get this state using just the graph-state gates on two qubits? We will
also allow you and Pauli and and even the phase gate , but not or . And not CNOT X Y S T CS CCZ

or Toffoli since only two qubits without ancillae. If not, can we prove not?

There is a more exact rule for computing the new state, predicated on the result of the measurement.
Since we have adopted the principle of deferred measurement, we can defer it to chapter 14 in
November . But we can see the results in Quirk by applying its postselection operators. Note that they
are outerproducts.

In any event, this shows special effects one can do with non-Clifford gates like . CCZ

Another Graph State Circuit Example:

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

H Hx1 z1

H Hx2 z2

-1

H Hx3 z3

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Z

-1

-1

