
CSE439 Fall 2025 Week 9: Beginning Shor's Algorithm

First, let us review the quantum innards of Simon's Algorithm. The first Hadamard transform on the " " x

half of the -dimensional Hilbert space, and then the reversible form , produce the "functional 2n Ff

superposition" of , which---using our vector indexing notation---is defined byf

if , else . u xy = ()
1

N
f x = y() 0

The second Hadamard transform of the " " half then gives , where we x v xy = -1 u ty()
1

N
∑

t∈ 0,1{ }n

()x•t ()

note that the "Boolean dot product" actually is the inner product in our vector space over the binary •

field, i.e., with addition modulo 2. Either , in which case the th-order Hadamard matrix gives x • t = 0 n

, or , giving . Putting these together, we have: +1 x • t = 1 -1

v xy = ()
1

N
∑

t∈ 0,1{ }n

-1()x•t if f t = y()

0 otherwise.

If is 1-to-1, then for every there is exactly one such that , and that is the only nonzero f y t f t = y()

term in the sum. This term has the same magnitude for all . Note that if we get as the result of the x xy

measurement, it doesn't mean , only that we got amplitude from the such that . f x = y() t f t = y()

Every combo thus has magnitude . There are such combos, so the total xy =
1

N

1

2n N = 22 2n

probability is times , which is . That checks out, and we get a uniformly random .N2 1

N

2

1 x

In the other case, the hidden string is different from and for all s 0n f x = f x ⟺ x ⊕ x = s (1) (2) 1 2

, which makes is 2-to-1 in this very particular manner. Now for any that we get from x , x ∈ 0, 11 2 { }n f y

the measured output , the definition of guarantees that is in the range of . Hence there are xy u y f

exactly two strings such that , and those obey . Thus the only two t , t1 2 f t = f t = y(1) (2) t ⊕ t = s1 2

nonzero terms of the sum, for the given and (any) , yieldy x

.v xy = -1 + -1()
1

N
()x•t1 ()x•t2

Now by the fact that and being the same as vector addition in our mod-2 space, we get t = s⊕ t2 1 ⊕

, and so-1 = -1 = -1 = -1 -1()x•t2 ()x• s⊕t(1) ()x•s + x•t1 ()x•t1 ()x•s

 .v xy = -1 1 + -1()
1

N
()x•t1 ()x•s

The nub is that whenever , the sum in parentheses cancels, giving as the amplitude of x • s = 1 0

. Thus the only possible strings we can get from the measurement are those for which v xy() x

. Those are the same as those in the orthogonal subspace of . Because all the
nonzero
x • s = 0 ⟨s⟩⟂ s

amplitudes are equal, we get a uniformly distributed member of that subspace---and this makes the x

probability analysis of the outer classical part correct. This completes the proof...☒

...provided we trust that the probabilities really do sum to . Well, by "quantum conservation" and the 1
laws of Nature, they have to. But it's good to do this final "Simon's sanity check": We have magnitude

 for each non-canceled amplitude (ignoring the sign). By being 2-to-1 the range is half the target 2

N
f

space, so there are possible values . And any is possible (again note: this does not 2n-1 y x ∈ ⟨s⟩⟂

extail from the final measurement), so there are of those. So there are f x = y() 2n-1 =
N

2

2
N

4

2

combos, each of probability , so yes the probabilities sum to .
4

N2 1

From Simon to Shor

The premise that has a "hidden string" is what makes the quantum part tick. Note that the proof f s

analysis does not require us to know the string , only to know tnat there is one. The outer classical s

part eventually enables to compute what is---with high probability of success, that is. It is unknown s

whether there is a polynomial-expected-time quantum algorithm, able to query repeatedly as Ff

Simon's does, that can distinguish a general 2-to-1 function apart from 1-to-1 cases. This is widely f
disbelieved, but there is a technically-related problem that is "on the bubble": whether two given
undirected graphs and are isomorphic (meaning: they are structurally the same graph but G1 G2

maybe with differently-numbered nodes). I believe this so-called Graph Isomorphism (GI) Problem
belongs to simply by my belief that GI is in classical .BQP P

On the classical side, even if we are told that exists, it is still a needle in a -sized haystack. With s 2n

the Deutsch-Jozsa problem, we proved that a deterministic classical algorithm---when limited to
querying for values on individual strings only---requires such queries (and hence f x() x 𝛺 2n

requires time) in worst case to distinguish the "constant" and "balanced" cases. But if we 𝛺 2n

choose queries at random and keep getting the same answer, we can be pretty sure after awhile that
"constant" applies---while getting two different answers instantly rules out "constant". Indeed, the
expected time for our randomized algorithm is basically . The anti-classical point of Simon's O n()

problem is that he proved that not even a randomized algorithm---again making individual- queries x

only---can do better than expected time to unearth the value of . 𝛺 2n s

This leaves open whether a classical algorithm that is allowed to make "superposed queries" via linear
combinations can succeed here. That is to say, the binary strings become basis vectors in -2n x ex N

dimensional space as in the quantum case. Any vector can be written asw

w = a e ,∑

x x x

where we don't necessarily have to restrict the linear-combination coefficients to be 0 or 1; they ax

could be arbitrary real or even complex numbers. The difference is that when we query " ", we get f w()
not a legal quantum superposition state but the classical linear combination

w' = a f e ,∑

x x (x)

which is a long vector too. When is 2-to-1, we get some duplication in this vector, but it can get f
"mishmashed away" by other values being added on top. Another factor is that we need to use queries

 that can be specified without explicitly writing out terms---whereas, we justified that the simple w 2n

functional superposition can be prepared by a linear-sized quantum circuit. My gut-∑

x x f x()

feeling is that for those queries that can be similarly succinctly specified in or time, the w O n() nO 1()

gain for a classical algorithm using linear algebra is minimal. But this also is not proven---the issues
are related to the "Algebrization" barrier to resolving the versus question.P NP

Peter Shor, in 1993, was perhaps the first to realize that the feature broadly represented by the hidden
string could be tied to a problem that has resisted solving for over 2,000 years: s

Factoring: Given a natural number , find a prime number that divides .M p M

This is more than the problem of telling whether itself is prime. That was placed into deterministic M

time roughly almost 25 years ago, where is the number of bits when is written in O n6 n ∼ Mlog2 M

binary. [Improving the "6" to match lower exponents long-known for classical randomized algorithms
has proved to be a thorny problem unto itself.] The Sieve of Eratosthenes works in time

 time. There are (classically randomized) algorithms that provably work in roughly O = O 2(M) n/2

 time, and some that possibly work in or maybe even time, but those still O 2n1/3

O 2n1/4

O 2n1/5

count as exponential time. There are substantial theoretical and experiential reasons for believing that
time , let alone polynomial time , is impossible for classical (randomized) 2no 1()

2 = nO n(log) O 1()

algorithms---and that this applies even when is a product of just two primes. [Mind-you (1): the M = pq

reasons are weaker than those for believing , because the decision version of the problem---P ≠ NP

FACT: Given a natural number and a number , is there a prime number that divides ?M k p < k M

---belongs to but is not -complete unless something mighty close to actually happens. NP NP P = NP

The two versions are polynomial-time equivalent by classical binary search over . Mind-you (2): both k

Lipton and I believe that FACT is actually in , but never-mind why we think that.] It was hence a big P

shock when Shor proved:

https://www.scottaaronson.com/papers/alg.pdf

Theorem: Factoring belongs to , indeed has quantum circuits of size that give high BQP nO 2

probability of finding a prime factor.

Setup of Shor's Algorithm

In general, a period of a function is a value such that for all , f r x

.f x + r = f x() ()

The string of the "promise property" in Simon's algorithm actually obeys this definition, even though it s
is a vector not a scalar. When Peter Shor read Simon's paper, he conceptualized that the final
Hadamard transform amplified the periodic structure in the form of peaks and troughs of waves. The
"trough" is how having made the two terms in the amplitude cancel, whereas having a • s = 1 a • s = 0
made them add with the same sign and hence concentrate the resulting probabilities on those cases.

Now, ahem, converting periodic structure into peaks is really the job of the Fourier transform, not the
Hadamard transform. And the Fourier transform does this with numeric data, not just binary-string data.
Shor conceptualized that replacing the final Hadamard transform with the quantum Fourier transform
(QFT) might allow a similar concentration that makes a numeric period emerge. And there is one r

such function and period of pre-eminent interest in cryptography... Incidentally, the QFT on qubits is n

just the same as the ordinary Discrete Fourier Transform (DFT) on vectors of length . The N = 2n

circumstance that the QFT can be applied with quantum effort---so the theory of quantum nO 2

circuits tells us---is what makes the difference.

Periodic Functions

The important example of a periodic function is modular exponentiation:

.f x = a Ma() x mod

Here is a number in that is relatively prime to . This means that does not a 0, 1, … , M - 1{ } M a

share a prime divisor with . When is the product of two different primes and , this simply M M = pq p q

means that is not divisible by or by . If and did share a divisor , then would always be a a p q a M p ax

multiple of , and is also a multiple of because divides too. So you would not get all p a Mx mod p p M

of the possible values modulo . When is relatively prime to , what you always get is a number M a M

relatively prime to . This is worth spelling out more than the text does:M

Definition: .G = 1 ∪ a : 1 < a < M and a is relatively prime to MM { } { }

Theorem: forms a group under multiplication. GM

A group is a set with a distinguished element together with an operation that satisfies the G 1 ⦿

following axioms:

• For all , .g ∈ G g⦿1 = 1⦿g = g

• For all there is a unique such that and . We write .g ∈ G h ∈ G gh = 1 hg = 1 h = g-1

For example, the unitary matrices form a group with . Well, the numbers in modular n × n U U = U-1 *

arithmetic form groups that are simpler to understand.

When is a product of two primes, the size of is exactly . (The general name M = pq GM p - 1 q - 1()()

for the size of is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.) The consequence of being a group that we need is:GM

Corollary: For all there is a positive integer such that . a ∈ GM r a ≡ 1 Mr mod

The least such is exactly the period of that we want to find. It always divides , so when r f xa() |G |M

 we get that divides . You might think this should narrow down possibilities, but:M = pq r p - 1 q - 1()()

• We don't actually get the value factored for us---we don't even know m = p - 1 q - 1()() m

because we don't know how to factor to begin with.M =: pq

• Compared to the number of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than we might have to check is exponential in .m n

• By the way, the number in can be exponential in , so it looks like it takes too long to x ax n

compute to begin with. However, by iterated squaring modulo we can compute the f xa() M

following values in time: , , nO 2 a = a M1
2 mod a = a M = a M2

2
2 mod 4 mod

, , and so on up to a = a M = a M3
2
2 mod 8 mod a = a M = a M4

2
3 mod 16 mod

. Then we need only multiply together those such that a = a M = a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes . This needs only multiplications and mod- reductions of x 2i 2n M

-bit numbers, so it is doable in time using an -time integer multiplication n nO 2 nO()

algorithm. (Or we can say time using the simple multiplication algorithm. The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card
needed a chip.)

Nevertheless, if we do find the period ---for a "good" value which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find and by classical efficient means. p q

Theorem: There is a classical randomized algorithm that, when provided a function oracle
 some integer multiple of the period of , finds a factor of in expected g M, a =() f Ma mod M

polynomial time. That is, Factoring is in . BPPg

That proof is the entire content of Chapter 12. Lipton and I bundled this up into a separate chapter so
that instructors would have the freedom to skip it, as we'll do for the time being. (2024: It was in a
replacement lecture done online via Zoom.) So we can focus on the task of finding (or at least a r

multiple of) via quantum means.r

Shor's Theorem: We can build -sized quantum circuits that given and randomly-nO 2 M = pq

chosen allow sampling values via quantum measurement that with samples give high a ∈ GM w O n()

probability of calculating (some integer multiple of) .r

One Other Useful Fact: The values , when is the least period, are all f x , f x + 1 , … , f x + r - 1() () () r

distinct when is eponentiation modulo . [Why Shor's algorithm needs this property, even f = fa M

when measurement doesn't give you the least , is still mysterious.]r

Steps of Shor's Algorithm

1. Given , use classical randomness to guess a number between and .M a 2 M - 1

2. Use Euclid's algorithm to find . If it gives a number , then "ka-ching!"---we got a, Mgcd() c > 1

a divisor of . Since both and are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important case, this had a, M = 1gcd() a ∈ GM M = pq

probability and so was pretty likely anyway. By the way, Euclid's algorithm also gives p-1 q-1

pq

()()

you a number such that . But it doesn't give you this as a power of (to wit, b ab = 1 Mmod b a

as), which is what you'd need to get . b = a Mr-1 mod r

4. To give some slack, we choose a number and expand the domain of to Q = 2 ≈ Mℓ 2 f xa()

include in the interval up to , not just up to . The range is still to . So our x Q - 1 M - 1 1 M - 1

domain is in the range 0 to , which uses bits. This gives us quadratically many x 2 - 1ℓ ℓ ≈ 2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum ℓ

implementation of the classical gates needed to compute modular exponentiation. This nO 1()

produces the functionally superposed quantum state

.𝛷 = f

1

Q

∑

x∈ 0,1{ }ℓ
xf xa()

6. Apply the QFT (or its inverse) to the first qubits. ℓ

7. Then measure the whole result. Curiously, we ignore what happens in the " " portion of the f xa()

circuit. The fact that those final qubits were entangled with the first qubits is enough. So we n ℓ

let our output in the " -space" be the first bits of the measured result over the binary w x ℓ
standard basis.

My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for M = 21 = 3*7

(where I guessed), which gave since is the next power of after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

But there isn't any more to the quantum circuitry than that. It's all simply: compute a giant functional
superposition and apply QFT (or its inverse) to it.

The analysis establishes that with pretty good probability already in one shot, the part of the x

measured output reveals the period by a followup classical means. (Note: we do not generally xy r

gate here.) And with initial good probability over the choice of , the resulting value unlocks y = f xa() a r

the key to factoring . We will focus on understanding why the measured x has much to do with the M

period to begin with. The basic point---which has been known for centuries---is that the Fourier r
transform converts periodic data to peaked data. Here is how the simple quantum circuit above applies
this fact.

[Thursday's lecture will pick up here---please read the Aaronson blog post if you can. I will do a
"clumsy animation" using MathCha. My own quantum simulator is in the folder
/shared/projects/regan/QCSAT, executable code qci, on the CSE machines turing or cerf. I will
introduce it on Thursday too.]

The Intuition

The following intuitive explanation famously comes from Scott Aaronson,
https://www.scottaaronson.com/blog/?p=208 .

Recall: , where and are treated as numbers not strings and is a principal QFT x, u = 𝜔ℓ[] xu x u 𝜔 2ℓ

root of unity, wlog. . The angles of multiples and powers of are what we consider as 𝜔 = e2𝜋i/Q
𝜔

values in .0, Q - 1[]

Let stand for the true period of . Then is at most the size of the group , minus one,so in r f r GM

particular, . Let be any element of the group of size . Then we will picture r < M a GM p - 1 q - 1()() a

as a "crazy clock" that jumps units counter-clockwise at each time step. a

With fairly high probability, measurement---followed by figuring needed to get the guessed from the ri
measurement---yields a multiple of . The true is the least of the multiples. It is individually the most r r

likely value returned and is also returned with reasonable probability. A non-least might work anwyay. r

We can tell whether works by seeing if the classical part gives us or , else we just try the quantum r p q
process again.

Heading into the analysis, however, we need to say exactly what the measured string actually w

represents. In general, the angle represented by (when we actually use the complex plane to 𝛼 a
model the "crazy clock") will not be a whole-number fraction of the circle. But let us first suppose it is.
Then the smallest period (i.e., the true period) will go exactly once around the circle and back to angle r

 as represented by . So suppose is a correct guess of . Then with high probability, the output 𝛼 a ri r w

a

𝛼t

r1

rj
r2

r3 r9

r8

r6

r4

r5ri

C
K Each "guess" ri

"independently"
iterates the code:
Sleep timestepsri

so .t := t + ri

Move one unit in
the current
direction . 𝛼t

The guesses that are
close to a multiple of
the correct get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈ M2

discrimination of the true .r

https://www.scottaaronson.com/blog/?p=208

of the measurement has the same angle . Since angles add when we multiply complex numbers, this 𝛼

means takes us once around the circle. This in turn means that is the reciprocal of with regard r𝛼 𝛼 r

to the circle. So would be close to this reciprocal.w

In the general case, we have to go some number times around the circle before we get exactly back t

to . That is, we have with respect to the circle. So times whatever number represents a r𝛼 = t 𝛼 =
t

r
Q

the extent of once-around-the-circle in the units we are using. This finally means that should be w

close to in these units. The needs to be close enough to pull one final switcharoo: We don't know tQ

r
w

what is either, but from we get . Since has to be an integer, we just need to find a t w ≈
tQ

r
r ≈ t

Q

w
r t

that multiply the fraction into being real close to an integer. It turns out this will work when the
Q

w

additive error in the measured relative to the "true amplifying direction" is at most in the w
tQ

r
±0.5

circle's units. Choosing high enough makes those units fine enough for this to work. The "analysis Q

of the quantum part" tells how often the measured is close enough to be "good." (As was the case w

with Simon's algorithm, the text re-uses the letter " " to denote the particular string from the " -space" x x
that was obtained in the measurement.)

Details of Shor's Algorithm

The top-down goal is to find a number such that modulo but is not or X X ≡ 12 M X ≡ 1 ≡ -1

modulo . Then is a multiple of but neither factor is zero. When M X - 1 = X - 1 X + 12 ()() M

 with prime, this means and each divide one or both factors. We need to split them M = pq p, q p q

across the factors, so that and/or will find and as opposed to just X - 1, Mgcd() X + 1, Mgcd() p q

giving back again. Thus we want to guess such that:M a

1. The period of is even, so that is defined;r a r / 2

2. modulo .X = a ≢ M - 1r/2 M

3. Either or is a multiple of one of but not both.X - 1 X + 1 p, q

If our value of fails either of these, we just try again from the start of guessing . a a < M

Our treatment (blog post and chapter 12) also desires to be a multiple of or . It can be r p - 1 q - 1

shown that many give this "helpful" property, which requires . a r ≥ ≈ p - 1 q - 1()() M

(It is not clear whether we show this. It could be an exercise: Consider numbers that divide a product r

 of two nearly-equal composite numbers. Conditioned on , give a lower bound for mn r ≥ m, nmin{ }

the proportion that are a multiple of or a multiple of . Note that and need not be themselves m n m n

relatively prime; and are both even, for instance. It would still need to be argued that most p - 1 q - 1 a

give such an . But I am not sure that the "helpful" property is needed either.)r

Chapter 12 does handle the argument in property 3, given that is "helpful"---which also subsumes r

issue 1 since and are even. Issue 2 is handled by a random argument. p - 1 q - 1

We will see that the closer is to as opposed to being order-of , the more challenging for a r M M
potential classical simulation of Shor's algorithm.

Another thing to observe is that when is a Blum integer, meaning and are both congruent to M p q 3

modulo , then is divisible by but no higher even number. There are always four 4 p - 1 q - 1()() 4

square roots of modulo , so we need to argue that the 's such that is one of the good 1 M = pq a ar/2

ones are as plentiful as the bad ones. (Note that depends only on .) Here is an example for the r a

smallest Blum integer: . The quadratic residues are:21 = 3*7

1 : 1, 2 : 4, 3 : 9, 4 : 16, 5 : 4, 6 : 15, 7 : 7, 8 : 1, 9 : 18, 10 : 16,

20 : 1, 19 : 4, 18 : 9, 17 : 16, 15 : 15, 14 : 7, 13 : 1, 12 : 18, 11 : 16

Now . The numbers , , , and all give a factor via p - 1 q - 1 = 12()() Y = 8 - 1 8 + 1 13 + 1 13 - 1

.21, Ygcd()

: ; of course doesn't work.a = 1 r = 1

. Worksa = 2 : 2, 4, 8, 16, 11, 1

 (period is odd)a = 4 : 16, 1 3

; doesn't work because .a = 5 : 4, 20, 16, 17, 1 20 ≡ -1

. Period is "helpful" and is not . So works.a = 8 : 8 ≡ 12 r = 2 8 = 8r/2 -1

. Worksa = 10 : 16, 13, 4, 19, 1
The other values are mirror images.

A more interesting Blum integer IMHO is . Then . "Helpful" means the 77 = 7*11 p - 1 q - 1 = 60()()

period is a multiple of or of . Note: is a nontrivial square root of and 6 10 34 = 1156 = 77*15 + 12 1

is the other one. Does work?43 = 1849 = 77*24 + 1 2 2

etc.: yes.2 : 4, 8, 16, 32, 64, 51, 25, 50, 23, 46, 15, 30, 60, 43, 9, 18, 36, 72, 67, 57, 37, 74,

The next question is whether it is OK for the quantum part to obtain a multiple of a helpful . If r' = br r b

is even than certainly not, because will be . But if is odd---? In any event, we can obviate this ar'/2 1 b

question because we can single out the minimum with sufficiently high probability. r

The key auxiliary technical notion is a number that is "good" to help find .x r

The key part is the multiple of being relatively prime to . t Q r

The general drift is that a good gives a good chance of finding exactly, by purely classical means. x r
Of note:

This makes where the "vat" of hard cases: too sparse to guess at random. r ≈ M1-𝜖 0 < 𝜖 < 1

For the quantum part, however, we need . Just to finish off the classical part:Q > rM

Simulation Interlude

Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm. It pretty much
builds the concrete "mazes" for qubits and simulates all the legal "Feynman mouse paths" ℓ + n

through them. The run of my simulator on and succeeded on the second try:M = 21 a = 5

