
CSE439 Fall 2025 Week 9: Beginning Shor's Algorithm
 
First, let us review the quantum innards of Simon's Algorithm.  The first Hadamard transform on the " " x

half of the -dimensional Hilbert space, and then the reversible form , produce the "functional 2n Ff

superposition" of , which---using our vector indexing notation---is defined byf
 

if , else .  u xy  =  ( )
1

N
f x = y( ) 0

 

The second Hadamard transform of the " " half then gives , where we x v xy = -1 u ty( )
1

N
∑

 

t∈ 0,1{ }n

( )x•t ( )

note that the "Boolean dot product"  actually is the inner product in our vector space over the binary •

field, i.e., with addition modulo 2. Either , in which case the th-order Hadamard matrix gives x • t = 0 n

, or , giving .  Putting these together, we have: +1 x • t = 1 -1
 

v xy  =  ( )
1

N
∑

 

t∈ 0,1{ }n

-1( )x•t if f t = y( )

0 otherwise.

 
If  is 1-to-1, then for every  there is exactly one  such that , and that is the only nonzero f y t f t = y( )

term in the sum.  This term has the same magnitude for all .  Note that if we get  as the result of the x xy

measurement, it doesn't mean , only that we got amplitude from the  such that .  f x = y( ) t f t = y( )

Every  combo thus has magnitude .  There are  such combos, so the total xy =
1

N

1

2n N = 22 2n

probability is  times , which is .  That checks out, and we get a uniformly random .N2 1

N

2

1 x

 
In the other case, the hidden string  is different from  and for all s 0n f x = f x ⟺ x ⊕ x = s ( 1) ( 2) 1 2

, which makes  is 2-to-1 in this very particular manner.  Now for any  that we get from x , x ∈ 0, 11 2 { }n f y

the measured output , the definition of  guarantees that  is in the range of . Hence there are xy u y f

exactly two strings  such that , and those obey .  Thus the only two t , t1 2 f t = f t = y( 1) ( 2) t ⊕ t = s1 2

nonzero terms of the sum, for the given  and (any) , yieldy x
 

.v xy = -1  +  -1( )
1

N
( )x•t1 ( )x•t2

 
Now by the fact that  and being the same as vector addition in our mod-2 space, we get t = s⊕ t2 1 ⊕

, and so-1 = -1 = -1  =  -1 -1( )x•t2 ( )x• s⊕t( 1) ( )x•s + x•t1 ( )x•t1 ( )x•s

 

 .v xy = -1 1 +  -1( )
1

N
( )x•t1 ( )x•s

 

 

 



The nub is that whenever , the sum in parentheses cancels, giving  as the amplitude of x • s = 1 0

.  Thus the only possible strings  we can get from the measurement are those for which v xy( ) x

.  Those are the same as those in the orthogonal subspace  of .  Because all the 
nonzero 
x • s = 0 ⟨s⟩⟂ s

amplitudes are equal, we get a uniformly distributed member  of that subspace---and this makes the x

probability analysis of the outer classical part correct.  This completes the proof...☒
 
...provided we trust that the probabilities really do sum to .  Well, by "quantum conservation" and the 1
laws of Nature, they have to.  But it's good to do this final "Simon's sanity check": We have magnitude 

 for each non-canceled amplitude (ignoring the sign).  By  being 2-to-1 the range is half the target 2

N
f

space, so there are  possible values .  And any  is possible (again note: this does not 2n-1 y x ∈ ⟨s⟩⟂

extail  from the final measurement), so there are  of those.  So there are  f x = y( ) 2n-1 =
N

2

2
N

4

2

combos, each of probability , so yes the probabilities sum to .
4

N2 1

 
 
From Simon to Shor
 
The premise that  has a "hidden string" is what makes the quantum part tick.  Note that the proof f s 

analysis does not require us to know the string , only to know tnat there is one.  The outer classical s

part eventually enables to compute what  is---with high probability of success, that is.  It is unknown s

whether there is a polynomial-expected-time quantum algorithm, able to query  repeatedly as Ff

Simon's does, that can distinguish a general 2-to-1 function  apart from 1-to-1 cases.  This is widely f
disbelieved, but there is a technically-related problem that is "on the bubble": whether two given 
undirected graphs  and  are isomorphic (meaning: they are structurally the same graph but G1 G2

maybe with differently-numbered nodes).  I believe this so-called Graph Isomorphism (GI) Problem 
belongs to  simply by my belief that GI is in classical .BQP P

 
On the classical side, even if we are told that  exists, it is still a needle in a -sized haystack.  With s 2n

the Deutsch-Jozsa problem, we proved that a deterministic classical algorithm---when limited to 
querying for values  on individual strings  only---requires  such queries (and hence f x( ) x 𝛺 2n

requires  time) in worst case to distinguish the "constant" and "balanced" cases. But if we 𝛺 2n

choose queries at random and keep getting the same answer, we can be pretty sure after awhile that 
"constant" applies---while getting two different answers instantly rules out "constant".  Indeed, the 
expected time for our randomized algorithm is basically .  The anti-classical point of Simon's O n( )

problem is that he proved that not even a randomized algorithm---again making individual-  queries x

only---can do better than  expected time to unearth the value of .  𝛺 2n s

 
This leaves open whether a classical algorithm that is allowed to make "superposed queries" via linear 
combinations can succeed here.  That is to say, the  binary strings  become basis vectors  in -2n x ex N

dimensional space as in the quantum case.  Any vector  can be written asw

 

 



w =  a e ,∑
 

x x x

 
where we don't necessarily have to restrict the linear-combination coefficients  to be 0 or 1; they ax

could be arbitrary real or even complex numbers.  The difference is that when we query " ", we get f w( )
not a legal quantum superposition state but the classical linear combination
 

w' =  a f e ,∑
 

x x ( x)

 
which is a long vector too.  When  is 2-to-1, we get some duplication in this vector, but it can get f
"mishmashed away" by other values being added on top.  Another factor is that we need to use queries 

 that can be specified without explicitly writing out  terms---whereas, we justified that the simple w 2n

functional superposition  can be prepared by a linear-sized quantum circuit.  My gut-∑
 

x x f x( )

feeling is that for those queries  that can be similarly succinctly specified in  or  time, the w O n( ) nO 1( )

gain for a classical algorithm using linear algebra is minimal.  But this also is not proven---the issues 
are related to the "Algebrization" barrier to resolving the  versus  question.P NP

 
Peter Shor, in 1993, was perhaps the first to realize that the feature broadly represented by the hidden 
string  could be tied to a problem that has resisted solving for over 2,000 years: s
 

Factoring: Given a natural number , find a prime number  that divides .M p M
 
This is more than the problem of telling whether  itself is prime. That was placed into deterministic M

time roughly  almost 25 years ago, where  is the number of bits when  is written in O n6 n ∼ Mlog2 M

binary.  [Improving the "6" to match lower exponents long-known for classical randomized algorithms 
has proved to be a thorny problem unto itself.]   The Sieve of Eratosthenes works in time 

 time.  There are (classically randomized) algorithms that provably work in roughly O = O 2( M) n/2

 time, and some that possibly work in  or maybe even  time, but those still O 2n1/3

O 2n1/4

O 2n1/5

count as exponential time.  There are substantial theoretical and experiential reasons for believing that 
time , let alone polynomial time , is impossible for classical (randomized) 2no 1( )

2  =  nO n(log ) O 1( )

algorithms---and that this applies even when  is a product of just two primes.  [Mind-you (1): the M = pq

reasons are weaker than those for believing , because the decision version of the problem---P ≠ NP

 
FACT: Given a natural number  and a number , is there a prime number  that divides ?M k p < k M

 
---belongs to  but is not -complete unless something mighty close to  actually happens.  NP NP P = NP

The two versions are polynomial-time equivalent by classical binary search over . Mind-you (2): both k

Lipton and I believe that FACT is actually in , but never-mind why we think that.]  It was hence a big P

shock when Shor proved:

 

 

 

 

https://www.scottaaronson.com/papers/alg.pdf


 

Theorem: Factoring belongs to , indeed has quantum circuits of size  that give high BQP nO 2

probability of finding a prime factor. 
 
 
Setup of Shor's Algorithm
 
In general, a period of a function  is a value  such that for all , f r x
 

.f x + r  =  f x( ) ( )
 
The string  of the "promise property" in Simon's algorithm actually obeys this definition, even though it s
is a vector not a scalar.  When Peter Shor read Simon's paper, he conceptualized that the final 
Hadamard transform amplified the periodic structure in the form of peaks and troughs of waves.  The 
"trough" is how having  made the two terms in the amplitude cancel, whereas having  a • s = 1 a • s = 0
made them add with the same sign and hence concentrate the resulting probabilities on those cases.  
 
Now, ahem, converting periodic structure into peaks is really the job of the Fourier transform, not the 
Hadamard transform. And the Fourier transform does this with numeric data, not just binary-string data.  
Shor conceptualized that replacing the final Hadamard transform with the quantum Fourier transform 
(QFT) might allow a similar concentration that makes a numeric period  emerge.  And there is one r

such function and period of pre-eminent interest in cryptography...  Incidentally, the QFT on  qubits is n

just the same as the ordinary Discrete Fourier Transform (DFT) on vectors of length .  The N = 2n

circumstance that the QFT can be applied with  quantum effort---so the theory of quantum nO 2

circuits tells us---is what makes the difference.
 
 
Periodic Functions
 
The important example of a periodic function is modular exponentiation:
 

.f x  =  a  Ma( ) x mod
 
Here  is a number in  that is relatively prime to .  This means that  does not a 0, 1, … , M - 1{ } M a

share a prime divisor with .  When  is the product of two different primes  and , this simply M M = pq p q

means that  is not divisible by  or by .  If  and  did share a divisor , then  would always be a a p q a M p ax

multiple of , and  is also a multiple of  because  divides  too.  So you would not get all p a Mx mod p p M

of the possible values modulo .  When  is relatively prime to , what you always get is a number M a M

relatively prime to .  This is worth spelling out more than the text does:M
 
Definition: .G  =  1  ∪  a :  1 <  a <  M and a is relatively prime to MM { } { }

 

 



 
Theorem:  forms a group under multiplication.  GM

 
A group is a set  with a distinguished element  together with an operation  that satisfies the G 1 ⦿

following axioms:
 

• For all , .g ∈ G g⦿1 =  1⦿g =  g

• For all  there is a unique  such that  and .  We write .g ∈ G h ∈ G gh = 1 hg = 1 h = g-1

 
For example, the  unitary matrices  form a group with .  Well, the numbers in modular n × n U U = U-1 *

arithmetic form groups that are simpler to understand.
 
When  is a product of two primes, the size of  is exactly .  (The general name M = pq GM p - 1 q - 1( )( )

for the size of  is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.)  The consequence of  being a group that we need is:GM

 
Corollary: For all  there is a positive integer  such that .  a ∈ GM r a ≡ 1 Mr mod
 
The least such  is exactly the period of  that we want to find.  It always divides , so when r f xa( ) |G |M

 we get that  divides .  You might think this should narrow down possibilities, but:M = pq r p - 1 q - 1( )( )
 

• We don't actually get the value  factored for us---we don't even know  m = p - 1 q - 1( )( ) m

because we don't know how to factor  to begin with.M =:  pq

• Compared to the number  of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than  we might have to check is exponential in .m n

• By the way, the number  in  can be exponential in , so it looks like it takes too long to x ax n

compute  to begin with.  However, by iterated squaring modulo  we can compute the f xa( ) M

following values in  time: , , nO 2 a  =  a M1
2 mod a  =  a  M =  a M2

2
2 mod 4 mod

, , and so on up to a  =  a M =  a M3
2
2 mod 8 mod a  =  a M =  a M4

2
3 mod 16 mod

.  Then we need only multiply together those  such that a  =  a M =  a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes .  This needs only  multiplications and mod-  reductions of x 2i 2n M

-bit numbers, so it is doable in   time using an  -time integer multiplication n nO 2 nO( )

algorithm.  (Or we can say  time using the simple multiplication algorithm.  The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card 
needed a chip.) 

 
Nevertheless, if we do find the period ---for a "good" value  which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find  and  by classical efficient means.  p q
 

 

 



Theorem: There is a classical randomized algorithm that, when provided a function oracle 
 some integer multiple of the period of , finds a factor of  in expected g M, a  =( ) f Ma mod M

polynomial time.   That is, Factoring is in .  BPPg

 
That proof is the entire content of Chapter 12.  Lipton and I bundled this up into a separate chapter so 
that instructors would have the freedom to skip it, as we'll do for the time being.  (2024: It was in a 
replacement lecture done online via Zoom.)  So we can focus on the task of finding  (or at least a r

multiple of ) via quantum means.r
 

Shor's Theorem: We can build -sized quantum circuits that given  and randomly-nO 2 M = pq

chosen  allow sampling values  via quantum measurement that with  samples give high a ∈ GM w O n( )

probability of calculating (some integer multiple of) .r
 
One Other Useful Fact: The values , when  is the least period, are all f x , f x + 1 , … , f x + r - 1( ) ( ) ( ) r

distinct when  is eponentiation modulo .  [Why Shor's algorithm needs this property, even f = fa M

when measurement doesn't give you the least , is still mysterious.]r
 
Steps of Shor's Algorithm
 

1. Given , use classical randomness to guess a number  between  and .M a 2 M - 1

2. Use Euclid's algorithm to find .  If it gives a number , then "ka-ching!"---we got a, Mgcd( ) c >  1

a divisor of .  Since both  and  are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important  case, this had a, M = 1gcd( ) a ∈  GM M = pq

probability  and so was pretty likely anyway.  By the way, Euclid's algorithm also gives p-1 q-1

pq

( )( )

you a number  such that .  But it doesn't give you this  as a power of  (to wit, b ab = 1 Mmod b a

as ), which is what you'd need to get .  b = a Mr-1 mod r

4. To give some slack, we choose a number  and expand the domain of  to Q = 2  ≈  Mℓ 2 f xa( )

include  in the interval up to , not just up to .  The range is still  to . So our x Q - 1 M - 1 1 M - 1

domain is  in the range 0 to , which uses  bits.   This gives us quadratically many x 2 - 1ℓ ℓ ≈  2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.  

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum ℓ

implementation of the  classical gates needed to compute modular exponentiation.  This nO 1( )

produces the functionally superposed quantum state

.𝛷  =   f

1

Q

∑
 

x∈ 0,1{ }ℓ
xf xa( )

6. Apply the QFT (or its inverse) to the first  qubits.  ℓ

7. Then measure the whole result.  Curiously, we ignore what happens in the " " portion of the f xa( )

circuit.  The fact that those final  qubits were entangled with the first  qubits is enough.  So we n ℓ

let our output  in the " -space" be the first  bits of the measured result over the binary w x ℓ
standard basis.

 

 



 
My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for  M = 21 = 3*7

(where I guessed ), which gave  since  is the next power of  after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

 
But there isn't any more to the quantum circuitry than that.  It's all simply: compute a giant functional 
superposition and apply QFT (or its inverse) to it.
 
The analysis establishes that with pretty good probability already in one shot, the  part of the x

measured output  reveals the period  by a followup classical means.  (Note: we do not generally xy r

gate  here.)  And with initial good probability over the choice of , the resulting value  unlocks y = f xa( ) a r

the key to factoring .  We will focus on understanding why the measured x has much to do with the M

period  to begin with.  The basic point---which has been known for centuries---is that the Fourier r
transform converts periodic data to peaked data.  Here is how the simple quantum circuit above applies 
this fact.
 
 
[Thursday's lecture will pick up here---please read the Aaronson blog post if you can.  I will do a 
"clumsy animation" using MathCha.  My own quantum simulator is in the folder 
/shared/projects/regan/QCSAT, executable code qci, on the CSE machines turing or cerf.  I will 
introduce it on Thursday too.]

 

 



 
The Intuition 
 
The following intuitive explanation famously comes from Scott Aaronson, 
https://www.scottaaronson.com/blog/?p=208 .
 
Recall: , where  and  are treated as numbers not strings and  is a principal  QFT x, u  =  𝜔ℓ[ ] xu x u 𝜔 2ℓ

root of unity, wlog. .  The angles of multiples and powers of  are what we consider as 𝜔 =  e2𝜋i/Q
𝜔

values in .0, Q - 1[ ]
 
Let  stand for the true period of .  Then  is at most the size of the group , minus one,so in r f r GM

particular, .  Let  be any element of the group  of size .  Then we will picture  r <  M a GM p - 1 q - 1( )( ) a

as a "crazy clock" that jumps  units counter-clockwise at each time step.  a
 

 
With fairly high probability, measurement---followed by figuring needed to get the guessed  from the ri
measurement---yields a multiple of .  The true  is the least of the multiples.  It is individually the most r r

likely value returned and is also returned with reasonable probability.  A non-least  might work anwyay.  r

We can tell whether  works by seeing if the classical part gives us  or , else we just try the quantum r p q
process again.  
 
Heading into the analysis, however, we need to say exactly what the measured string  actually w

represents.  In general, the angle  represented by  (when we actually use the complex plane to 𝛼 a
model the "crazy clock") will not be a whole-number fraction of the circle.  But let us first suppose it is.  
Then the smallest period  (i.e., the true period) will go exactly once around the circle and back to angle r

 as represented by .  So suppose  is a correct guess of .  Then with high probability, the output  𝛼 a ri r w

 

 

a

𝛼t

r1

rj
r2

r3 r9

r8

r6

r4

r5ri

C
K Each "guess" ri

"independently"
iterates the code:
Sleep  timestepsri

so .t :=  t + ri

Move one unit in
the current 
direction .  𝛼t

The guesses that are
close to a multiple of
the correct  get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈  M2

discrimination of the true .r

https://www.scottaaronson.com/blog/?p=208


of the measurement has the same angle .  Since angles add when we multiply complex numbers, this 𝛼

means  takes us once around the circle.  This in turn means that  is the reciprocal of  with regard r𝛼 𝛼 r

to the circle.  So  would be close to this reciprocal.w

 
In the general case, we have to go some number  times around the circle before we get exactly back t

to .  That is, we have  with respect to the circle.  So  times whatever number  represents a r𝛼 = t 𝛼 =
t

r
Q

the extent of once-around-the-circle in the units we are using.  This finally means that  should be w

close to  in these units.  The  needs to be close enough to pull one final switcharoo: We don't know tQ

r
w

what  is either, but from  we get .  Since  has to be an integer, we just need to find a  t w ≈
tQ

r
r ≈  t

Q

w
r t

that multiply the fraction  into being real close to an integer.  It turns out this will work when the 
Q

w

additive error in the measured  relative to the "true amplifying direction"  is at most  in the w
tQ

r
±0.5

circle's units.  Choosing  high enough makes those units fine enough for this to work.  The "analysis Q

of the quantum part" tells how often the measured  is close enough to be "good."  (As was the case w

with Simon's algorithm, the text re-uses the letter " " to denote the particular string from the " -space" x x
that was obtained in the measurement.)
 
 
 
Details of Shor's Algorithm
 
The top-down goal is to find a number  such that  modulo  but  is not  or  X X ≡ 12 M X ≡ 1 ≡ -1

modulo .  Then  is a multiple of  but neither factor is zero.  When M X - 1 =  X - 1 X + 12 ( )( ) M

 with  prime, this means  and  each divide one or both factors.  We need to split them M = pq p, q p q

across the factors, so that  and/or  will find  and  as opposed to just X - 1, Mgcd( ) X + 1, Mgcd( ) p q

giving  back again.  Thus we want to guess  such that:M a
 

1. The period  of  is even, so that  is defined;r a r / 2

2.  modulo .X =  a  ≢  M - 1r/2 M

3. Either  or  is a multiple of one of  but not both.X - 1 X + 1 p, q
 
If our value of  fails either of these, we just try again from the start of guessing .  a a <  M
 
Our treatment (blog post and chapter 12) also desires  to be a multiple of  or .  It can be r p - 1 q - 1

shown that many  give this "helpful" property, which requires .  a r ≥   ≈  p - 1 q - 1( )( ) M
 
(It is not clear whether we show this.  It could be an exercise: Consider numbers  that divide a product r

 of two nearly-equal composite numbers.  Conditioned on , give a lower bound for mn r ≥ m, nmin{ }

the proportion that are a multiple of  or a multiple of .  Note that  and  need not be themselves m n m n

relatively prime;  and  are both even, for instance.  It would still need to be argued that most  p - 1 q - 1 a

 

 



give such an .  But I am not sure that the "helpful" property is needed either.)r
 
Chapter 12 does handle the argument in property 3, given that  is "helpful"---which also subsumes r

issue 1 since  and  are even.  Issue 2 is handled by a random argument. p - 1 q - 1
 

We will see that the closer  is to  as opposed to being order-of , the more challenging for a r M M
potential classical simulation of Shor's algorithm.  
 
Another thing to observe is that when  is a Blum integer, meaning  and  are both congruent to  M p q 3

modulo , then  is divisible by  but no higher even number.  There are always four 4 p - 1 q - 1( )( ) 4

square roots of modulo , so we need to argue that the 's such that  is one of the good 1 M = pq a ar/2

ones are as plentiful as the bad ones.  (Note that  depends only on .)  Here is an example for the r a

smallest Blum integer: .  The quadratic residues are:21 =  3*7
 
1 : 1, 2 : 4,  3 : 9,  4 : 16,  5 : 4,  6 : 15,  7 : 7,  8 : 1,  9 : 18,  10 : 16,  

20 : 1,  19 : 4,  18 : 9,  17 : 16,  15 : 15,  14 : 7,  13 : 1,  12 : 18,  11 : 16 
 
Now .  The numbers , , , and  all give a factor via p - 1 q - 1 = 12( )( ) Y = 8 - 1 8 + 1 13 + 1 13 - 1

.21, Ygcd( )
 

: ; of course doesn't work.a = 1 r = 1

.    Worksa = 2 :  2, 4, 8, 16, 11, 1

  (period  is odd)a = 4 :  16, 1 3

; doesn't work because .a = 5 :  4, 20, 16, 17, 1 20 ≡ -1

.  Period  is "helpful" and  is not .  So works.a = 8 :  8 ≡ 12 r = 2 8 = 8r/2 -1

.  Worksa = 10 :  16, 13, 4, 19, 1
The other values are mirror images.
 
A more interesting Blum integer IMHO is .  Then .  "Helpful" means the 77 = 7*11 p - 1 q - 1 = 60( )( )

period is a multiple of  or of .  Note:  is a nontrivial square root of  and 6 10 34 = 1156 = 77*15 + 12 1

is the other one.  Does  work?43  = 1849 =  77*24 + 1 2 2
 

etc.: yes.2 : 4, 8, 16, 32, 64, 51, 25, 50, 23, 46, 15, 30, 60, 43, 9, 18, 36, 72, 67, 57, 37, 74,
 
The next question is whether it is OK for the quantum part to obtain a multiple  of a helpful .  If  r' = br r b

is even than certainly not, because  will be .  But if  is odd---?  In any event, we can obviate this ar'/2 1 b

question because we can single out the minimum  with sufficiently high probability.  r
 
The key auxiliary technical notion is a number  that is "good" to help find .x r
 
 

 

 



 

 
The key part is the multiple  of  being relatively prime to .  t Q r
 
 

 
 
The general drift is that a good  gives a good chance of finding  exactly, by purely classical means.  x r
Of note:
 
 

 

 



 
This makes  where  the "vat" of hard cases: too sparse to guess at random.  r ≈  M1-𝜖 0 <  𝜖 <  1

For the quantum part, however, we need .  Just to finish off the classical part:Q >  rM
 
 

 

 



 
 
Simulation Interlude
 
Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm.  It pretty much 
builds the concrete "mazes" for  qubits and simulates all the legal "Feynman mouse paths" ℓ + n

through them.  The run of my simulator on  and  succeeded on the second try:M = 21 a = 5

 

 



 

 

 


