CSE439, Fall 2025 Problem Set 4 Due Sun. 10/26, 11:59pm

Reading: For next week, read Chapter 11 on Shor’s Algorithm. This is tough sledding
with formulas. Tuesday’s lecture will be conceptual out of sections 11.1-11.3 and will follow
notes at https://cse.buffalo.edu/ regan/cse439/CSE439Week9.pdf after summarixing Simon’s
Algorithm. Thursday’s lecture will crunch down on sections 11.4-11.7.

(1) Suppose we make a one-qubit circuit C' completely out of the gates H, X, Y, Z, using
an even number of Hadamard gates. Prove that this is equivalent to a circuit ¢’ without any
Hadamard gates at all. What’s the maximum number of gates we need in C'? (Recall that
multiplying a circuit or gate by a unit scalar is considered to be equivalent. 18 pts.)

(2) Let us invent a symbol for the operation on Problem 3 of Prelim I and note one more
equation for it (at far right):
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Consider this to be a basic gate, which we may also call E. In fact, the Quirk simulator allows

one to make this symbol using an X gate (which it displays as @) and on a second qubit line,
a smaller & from the “Toobox2” at lower left.
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Now let G be any graph on some number n of vertices, undirected but with self-loops
allowed. Let Cg stand for the corresponding graph-state circuit the way we have defined it:
H®" at the left and right ends, and in between, a CZ gate for every edge of G and a Z gate for
every self-loop (if any). Prove that C¢ is equivalent to the circuit Cf, without the Hadamard
transforms that just uses the new gate E for each edge and X for each self-loop. (Hint: Start
with C(;, where you just have gates for the edges and loops in the graph in whatever order,
and use the rightmost above equation to substitute for E. For any X gates, use an equation
you may notice in problem (1). Describe in words what you get. 18 pts.)

(3) Show that the mechanism of superdense coding works equally well for the following
quantum circuit, again with “Alice” on qubit 1 and “Bob” on qubit 2:
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To wit, Alice chooses one of the Pauli matrices I, X,Y,Z to fill in between the E gates as
defined in problem (2). She measures her qubit and sends the single classical bit result to Bob


https://cse.buffalo.edu/~regan/cse439/CSE439Week9.pdf

(shown as double line). Bob is then able to tell which of the four operations Alice chose, e.g.
by measuring his own qubit.

You may if you wish trace this via maze diagrams as was done for the original superdense
coding circuit in lecture. For each E gate, you may use either of the mazes in the Prelim I
problem (3) or its key, or you may use the following single-stage representation with four-way
branching:

However, you can shortcut matters by applying facts you may notice from problems (1) and
(2) above to the original analysis from the text section 8.3 and lecture. Either way, please
also answer the following: Do you get the exact same correspondence between Bob’s two bits
and the I, X, Y, Z choice by Alice as in the original? (18 pts.)

(4) This problem is midway between the “maze diagram” analysis of small quantum
circuits—graph state circuits in particular—and the kind of linear algebra done in the proofs of
Deutsch-Jozsa and Simon’s algorithm. Recall from lecture that the analysis of n-qubit graph
state circuits Ci can be reckoned in terms of colorings of the associated graph G = (V| E),
|V| = n, where each vertex in V' is colored either black (B) or white (W). Call a coloring
“even” if it makes an even number of B-B edges (counting zero as an even number) and “odd”
otherwise. Note that if the node of a self-loop is colored B, then the loop counts as a B-B
edge. The point is that there are 1-to-1 correspondences between:

e binary strings z of length n, which correspond also to basis states |z);
e colorings of V| where vertex i is colored B means that bit z; = 1; and

e “mice” in the “maze,” since the initial H®*" Hadamard transform puts one positive
mouse on each row.

Thus a coloring makes an odd number of B-B edges if and only if the mouse along the
corresponding row ends up negative. In consequence:

e G is “net-zero”—meaning (0" | Cq | 0") = 0—if and only if the number of positive mice
equals the number of negative mice, which is the same as G having 2"~! even colorings
and 2"~ ! odd colorings.



e In general, the amplitude of (0" | C | 0™) equals the number of even colorings minus the
number of odd colorings, divided by 2.

Now, let us take any n-node undirected graph G = (V, E) and edge (u,v) of G. Let
us connect a new node w by edges to u and v to make a triangle, and add a second new
vertex ¢ connected only to w. The resulting graph G’ = (V/, E’) has V' = V U {w, t} and
E' = FU{(u,w), (v,w),(t,w)}. Here are a few examples of this transformation:
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Your task is to prove the following identity, for any n and graphs G and G’ as above:
1
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Conclude that G’ is net-zero if and only if G is. (Hint: Consider separately the four possible
combinations of colors for u and v in the original graph . Show in each case how many
colorings of the extra nodes w,t flip the parity of B-B edges. 24 pts., for 78 regular credit
points on the set For up to 18 pts. extra credit, assuming nodes w,t are numbered n +
1 and n + 2, prove the answer to whether we get (200 |Ce |200) = % (z|Cq|x) for all
x € {0,1}" You are welcome to consult the answer key for last year’s similar problem at
https://cse.buffalo.edu/ regan/cse439/CSE439F24psdkey.pdf.)


https://cse.buffalo.edu/~regan/cse439/CSE439F24ps4key.pdf

