CSE439, Fall 2025 Problem Set 7 Due Tue. 12/2, 11:59pm

Reading: For next week, read the mentioned materials on the Singular Value Decomposi-
tion: Section 2.8 on the SVD of Professor Knepley’s notes and MIT Courseware npted on the
SVD:

https://cse.buffalo.edu/ knepley/classes/cse439/ClassNotes.pdf
https://math.mit.edu/classes/18.095/20161AP /lec2/SVD _Notes.pdf

The homework is roughly parallel to the first half of last year’s Assignment 6, though actually
its first problem was given before our Prelim II. I've made it due on Tue. 12/2 so that questions
can be asked in lecture or office hours that day. Assignment 8 will have SVD problems a-la
the second half, and will be due on Monday, 12/8.

(1) Compute the unitary matrices €™ and e¢2X. Note that 71X is no longer unitary but
remains Hermitian, and that the 7 multiplies the eigenvalues but not the eigenvectors. (9 +

12 = 21 pts.)

(2) Let I' stand for the quantum state of the graph-state circuit of the three-node triangle
graph G (on input [000) by default) before applying the second Hadamard transform. In
the notation of the “quantum assembly language” of the C++ simulator demo’ed for Shor’s
Algorithm in class, the state results from |[000) byH 1 H 2 H3 CZ 1 2 CZ 2 3 CZ 1 3. We
skip the final Hadamard transform to minimize pencil-pushing and to use our intuition from
the “maze diagrams” of the signs of the terms |000) through |[111) of the resulting state. (If
you did simply E 1 2 E 2 3 E 1 3 using our E gates, you would have to follow with H 1 H
2 H 3 in order to undo the final Hadamard transform. It doesn’t matter structurally so much
because single-qubit gates can never change entanglements.)

(a) Show the 8 x 8 density matrix pr = |I') (I'|. (It’s quicker and nicer than you expect if
you've grokked the ideas of the maze diagrams. 6 pts.)

(b) Label the nodes A, B,C' (it doesn’t matter which node is which letter since the graph
is symmetrical, but let C' correspond to the third qubit, which is the low-end bit in
our big-endian notation). Then compute the 4 x 4 density matrix p’ that results from
tracing out C'. Show that it represents the pure, unentangled state |—+). (Note that
this is different from the state in problem 4(a) of Prelim II for the one-edge graph left
over when you delete vertex C' and its edges. 9 pts.)

For the continuation of this problem, we refer to the following six 4 x 4 matrices:

1 0 00 0 0 0 O 1 0 0 1 1 0 0 -1 0 0 0 O 0o 0 0
01 00 0 000/ 1fo0O0O OO 1]J]0 0O0 O 1jo 11 of 10 1 -1
0000’00 10”200 00”20 00 0 2]0 1 1 0["21]0 -1 1
0 0 0 O 0 0 01 10 01 -1 0 0 1 0 0 0 O 0 0 0

OO OO


https://cse.buffalo.edu/~knepley/classes/cse439/ClassNotes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

The first two represent measuring just the first qubit in the standard basis. The latter
four represent measuring both qubits in the Bell basis, respectively ®* = %(|00) + |11)),
©~ = 5(]00) — [11)), ¥F = —5(|01) + [10)), and ¥~ = —5(|01) — |10)). Note that both the
first two matrices and the last four matrices sum to the identity and that each stays itself
when squared, so the first two matrices satisfy the formal definition of a measurement and so
do the last four.

(c) Calling the first matrix My, calculate the trace of Myp' My to give the probability of
getting |0) for the first qubit, and also verify that if that outcome happens, then the
resulting state is |0) ® |[+). (6+3 = 9 pts.)

(d) Using the third matrix, show that if p’ (that is, the pure state |—+)) is measured in the
Bell basis, then outcome ®* cannot happen. (3 pts.)

(e) What about if you multiplied (on both sides) by the all-1s matrix J (divided by 4)
instead? Note that J = |+) (+| and hence represents the projector for the outcome

|[++) in the Hadamard-transformed basis we’ve seen for several problems (which should
not be confused with the Bell basis). (3 pts.)

(f) Using the fourth matrix, calculate the probability of outcome ®~ when measuring o in
the Bell basis. (6 pts.)

(g) Finally, we add one more vertex labeled D to the graph G, connecting it to B and C,
but not to A, to make a new graph G”. Write down the sixteen signs of the terms |0000)
through [1111) in the corresponding graph state I'” (again, before the final Hadamard
transform). You should have 8 + and 8 — signs because G” is also “net-zero.” Our
$64,000 question is whether tracing out D leaves the triangle graph G and its state I'
back again. You should be able to answer this without the torture of writing out the
whole 16 x 16 density matrix |I") (I'”| and doing the whole traceout—just do enough
of the lower-left (or upper right) corner to tell. (6 + 6 = 48 pts. on the whole problem
and 69 on the set)

If you're curious, you can do the whole 8 x 8 density matrix p” that results from tracing out
node D, and try to tell: is p” a mixed or pure state, and either way, is p” entangled? The lecture
on Thursday Dec. 4 will continue this example while showing how to use the SVD to find sepa-
rable states that most closely approximate entangled ones, among other applications. If you're
even more curious, look at my “GLL” blog article https://rjlipton.com/2022/01/05/quantum-
graph-theory/, which shows how the frontier of real research—including some by Professor
Chunming Qiao and others at UB—is not too far beyond these examples and topics.
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