CSE439/510 Week 10: Details of Shor's Algorithm

74 k7510 lethe In Jek2g) 2024
St Aparitpm, Sty 74 Bashack b, 4 5 42
Lyt M= pg whir 1.4 art Dbt prives, o lg M X 20

b <M. T gedlam) =1 ity chona) we 9eFa larkor 1oy
b0 Sppase gid i 4, e ais eIy g7 b M [atgy)

Goal: Compete 8 e goid > lewr 1 subs b7 a"= 4 atids M.
Nz nidfigles o v ape oo Peod, and w vy get Henr 105tad.

ﬁﬂi: A miay ke I/fi?/a(_k{ In Hhat tvin athr geih 'y, it & et
e o ?ﬂermf;g M (lssically vomdmnpd /g/j’ﬁ ik Ophed s’
Makes 1Y 50 s 18 at WSt 4 50-50 ;}Wgﬁf&yﬁ,{%w a7l e
Wy here whert Y e o YL 7 digfnnt a 4

§7‘?1 :///1“9 0 b 4# aﬁ(r ey & pu? ﬂél/ﬂm;éﬁ?ﬁ

: e o all # 4 ﬂz b 4% ;y aly)

O ‘L‘-‘;’b"%w/)%"ql Mﬂfﬁ. of 1f,x)70 X iid M Sy indlnde ol X
W R =2 wae L7 Tlog, WY o &3 el pr £2
ot M* e achielly by red ¥ /M}%ﬁe 5> }fj’(’? }ﬁ?ﬂ 0
Ther X=un ghe log WY = plyt = 747 Z -

The fang Sag md M. T it)=, ’\;ﬁgﬁ‘b,ﬁ (?'e:xfw

O P frgpr N st @ - ‘/— G Zd o7) ;};{j :;f)
() A/M’?’ @Ff (o 1k)}Wf*".?f) o 17 IX)/E,r/,} /,;.aff,; fr‘ v

gm:*mr};’ bj"m’w ‘VMM

@ /WWJW" ol f”b’wa 76“1 M}Wé T Y

/X).
0y i o Wf)’yf/f }aflwm}ff/ﬂ}/"’ M/M'/}U

%
udy Hedt £ yi i amyl
: %‘”“;f?g’;/ﬂ we //M‘r’ > T 4 W// v M with

Ly |

The second backtrack point comes after the measurement. A quantum technote: Because the
measurement "collapses" the quantum state b, in the actual quantum algorithm, backtracking here
requires rebuilding the whole functional superposition---i.e., redoing the whole circuit. But in my brute-
force quantum simulator, it can do another sample without having to re-create all the Boolean formulas

that simulate the superposed applications of f,(x) = a* mod M.

T el st S / : /4,1
2
51097 We WW o pxist an /WW € suh ot m/ u}w&/m‘

ffuﬁ
Wit wt don't koot 1 EPR8, oF o, gl 1 ST L v
1 b) pab 1, 52 P iy ol oy g

f
Chane o) A ¥ f"""{ pt il) vy paikiecs o ot

- " . 2 g - " 9 i.: S EEYE = :r__/ : 7 e i
CD) Ty o clelat v brom X Thid alwss Sty e 1 ol

k() L/.’”:’ JTIF ! ’fI f m. J [ﬁ//ﬁ’f/ﬁé ‘j Y iF (x"'—j“ /r".c/-’;f E/ j';f/,f(ff_,fr’l'-‘-g{f Gt
¥ fil p e — 907 /’f/ whilh 1itgns rfﬂ‘jw/w/,
.I 1 .’ r/r///ﬁf‘f”{/ 7oyt fo /i

F /é;.- il Yo '}ﬁ{':'z — 77 9l we é/ T (A { A fol, NI

‘/’r‘ Al l hiand (Ml

@ Move to Archive X —-’-'_'"m

hat we fusid 4 - k(\[W‘/l : @MMMM’ g)epj
. \,/)

A m
- Ni alh ¥ hw e 7 r
Wi ples i t Ao Mie j i o 5 e /i// UN@’ m h MM'{ Q
i IIM;m
@ Chors {.9\ whie ‘ 1 » .
N e) ! i ") 7] ./‘m %
1) fagae o shie Q¢ J/ Z@ KM b Sl 7 S N 405 AT
B ok 07 (o) S et b 0y btk g £ b oot = g f6)
b Wewwe ol abie o gt o gompl Xy o We w," (é“nl- V> ik numg w i
G Len bk . ik \ M‘Es ’w OMVWIK VHH’ il k/
.'”~ Ol A 1 g, () din .‘"*-’f_f, 4 el b | o ’J & alk . \<
Th X 4 a0 1 0 i L= (ol v dint [oa \
4 - Wl g day Thit} LT TATIO n -/ \ 11 i--\'w ot b | m'jf T (F i; rwb - /hww
Ww*'uw (fa Lllgn)} A (A N TS o
m X mum Sultteds iy \ j o .
@ Wb ¢y hanj, Yoh u«lh | Wi ‘3“& B‘ 'M‘“’ m/ .
il LT ¢ ok
Ubilndeg gy g Ok g LS
’ms Hny Pfc i N\vu,n VIR ‘J“‘l Aﬂ . S AT }

EF f“_'?_,fn\&v\ﬁh. 55 b *(ve (=

Analytical Goals of Shor's Algorithm (looking ahead to chapter 12)

The top-down goal is to find a number X such that X> = 1 modulo M but Xisnot = 1 or = -1
modulo M. Then X?> -1 = (X-1)(X + 1) is a multiple of M but neither factor is zero. When

M = pq with p, q prime, this means p and g each divide one or both factors. We need to split them
across the factors, so that gcd(X — 1, M) and/or ged(X + 1, M) will find p and g as opposed to just
giving M back again. Thus we want to guess a such that:

1. The period r of a is even, so that r/ 2 is defined;
2.X = a” £ M -1 modulo M.
3. Either X — 1 or X + 1 is a multiple of one of p, g but not both.

If our value of a fails either of these ("unlucky"), we just try again from the start of guessinga < M.

Our treatment (blog_post and chapter 12) also desires 7 to be a multiple of p —1 or g — 1. It can be

shown that many a give this "helpful" property, which requires r > V(p-1)(g-1) = VM.

(It is not clear whether we show this. It could be an exercise: Consider numbers r that divide a product
mn of two nearly-equal composite numbers. Conditioned on r > min{m, n}, give a lower bound for
the proportion that are a multiple of m or a multiple of nn. Note that m and 7 need not be themselves
relatively prime; p — 1 and q- 1 are both even, for instance. It would still need to be argued that most a
give such an r. But | am not sure that the "helpful" property is needed either.)

Chapter 12 does handle the argument in property 3, given that r is "helpful"---which also subsumes
issue 1 since p—1and g — 1 are even. Issue 2 is handled by a random argument.

We will see that the closer r is to 'V M as opposed to being order-of M, the more challenging for a
potential classical simulation of Shor's algorithm.

Another thing to observe is that when M is a Blum integer, meaning p and g are both congruent to 3
modulo 4, then (p — 1)(g — 1) is divisible by 4 but no higher even number. There are always four

square roots of 1 modulo M = pq, so we need to argue that the a's such that a"? is one of the good
ones are as plentiful as the bad ones. (Note that r depends only on a.) Here is an example for the

smallest Blum integer: 21 = 3%7. The quadratic residues are:

1:1, 2:4, 3:9, 4:16, 5:4, 6:15, 7:7,8:1, 9:18, 10:16,
20:1, 19:4, 18:9, 17:16, 16:4, 15:15, 14:7, 13:1, 12:18, 11:16

Now (p —1)(g—1) = 12. The numbers Y =8-1,8+1, 13+ 1, and 13 -1 all give a factor via
ged(21, Y).

a =1:r = 1; of course doesn't work.

a=2:2,48,16,11,1.

a=4:16,1 (period 3 is odd)

a=>5:4,20,16,17,1; doesn't work because 20 = —1.

a=8: 8% =1. Period r = 2 is "helpful" and 8"? = 8 is not —1. So
a=10:16,13,4,19,1.

The other values are mirror images.

https://rjlipton.com/2011/12/10/a-lemma-on-factoring/

A more interesting Blum integer IMHO is 77 = 7+11. Then (p —1)(g — 1) = 60. "Helpful" means the
period is a multiple of 6 or of 10. Note: 34% = 1156 = 77+15 + 1 is a nontrivial square root of 1 and
432 =1849 = 77x24 + 1 is the other one. Does 2 work?

2:4,8,16,32,64,51,25,50, 23,46, 15, 30,60, 43,9, 18,36, 72, 67,57, 37,74, etc.:

The next question is whether it is OK for the quantum part to obtain a multiple ' = br of a helpful r. If b

is even than certainly not, because a”2 will be 1. Butif b is odd-—-? In any event, we can obviate this

question because we can single out the minimum 7 with sufficiently high probability.

The key auxiliary technical notion is a number x that is "good" to help find 7.

11.2 Good Numbers

Let O be a power of two, O =2", such that M> < Q <2M?. Say an integer x in
the range 0. 1,.... Q-1 1s good provided there is an integer 7 relatively prime
to the period r such that

tQ—xr=k, where —-rl2<k<r/2. (11.1)

The first key part (used later) is the multiple t of Q being relatively prime to r. The second key part is
that there is a 1-to-1 correspondence between t's and good x's. So the number of good x's equals the
size of G,. Now unlike with |Gys| = (p—1)(9—1), whichis ~ M, we don't know |G,| since r could
have any manner of factors. But there is a bound that is almost as good as proportionality:

IftQ = kmod’ r, where mod " means using [-7/2, 7 /2] rather than [0, r — 1] for the modular
values, then we get tQ = k + xr for some unique x, where —r/2 < k < r/2.

LEMMA 11.1 There are Q(W) good numbers.

Proof. The key insight is to think of equation (11.1) as an equation modulo r.
Then it becomes
tO=k mod r,

where —/2 <k <r/2. But as ¢ varies from 0 to r—1, the value of k can be
arranged to be always in this range, so the only constraint on 7 is that it must
be relatively prime to r. The number of values 7 that are relatively prime to r
defines Euler’s totient function, which is denoted by o(r). Note that for each
value of 7 there is a different value of x, so counting 7s is the same as counting
xs. Thus, the lemma reduces to a lower bound on Euler’s function. But it is

known that)
Mz)=0 (;))
loglogz

Indeed, the constant in €2 approaches ¢, where ~=0.5772156649 . .. is the
famous Euler-Mascheroni constant. In any event, this proves the lemma. [

The general drift is that a good x gives a good chance of finding 7 exactly, by purely classical means.
Of note:

If r is close to M, then by choosing Q close to M rather than M?, we would
stand a good chance of finding a good x just by picking about log /-many of
them classically at random. However, this does not help when r is smaller. The
eenius of Shor’s algorithm is that the quantum Fourier transform can be used
to drive amplitude toward good numbers in all cases.

This makes 7 ~ M€ where0 < e < 1 the "vat" of hard cases: too sparse to guess at random.
For the quantum part, however, we need Q > rM.

LEMMA 11.7 Ifxis good, then in classical polynomial time, we can determine
the value of r.

Proof. Recall that x being good means that there is a t relatively prime to r so
that (by symmetry)

xr—tQ=k where - —<k<

3| =
r3| ~

Assume that £ > 0: the areument is the same in the case where it is negative.
We can divide by rQ and get the equation

x ot |
- E —
QO ri—20
We next claim that r and 7 are unique. Suppose there is another '/r’. Then
t l I
——= 2 =275
¥ rf rr! MH

But then both fractions are close, which makes Q smaller than M?, a contra-
diction.
Because r is unique, it follows that 7 is too. So we can treat

xr—tQ=k

as an integer program in a fixed number of variables: the variables are r, 1, and
two slack variables used to state

—r2<k<r/2

as two equations. While integer programs are hard in general, for a fixed num-
ber of variables they are solvable in polynomial time. This proves the lemma.
]

Simulation Interlude

Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm. It pretty much
builds the concrete "mazes" for £ + n qubits and simulates all the legal "Feynman mouse paths"
through them. The run of my simulator on M = 21 and a = 5 succeeded on the second try:

[Show demo]

About to do try 1 of sampling QFT applied to 1010101011010010100 with status now PROBS_ENUMERA
sampling with status PROBS_ENUMERATED:

Base probability for conditionals: 0.166015625000

Current: 0 with probability 0.083007813 on rolling 0.325191374; Tlast 0 prob = 0.500000000
Current: 00 with probability 0.055282593 on rolling 0.563273639; last 0 prob = 0.665992647
Current: 001 with probability 0.027659269 on rolling 0.559076137; last 0 prob = 0.499674899
Current: 0010 with probability 0.027418884 on rolling 0.941772811; last 0 prob = 0.991309060
Current: 00101 with probability 0.027183985 on rolling 0.139894580; last 0 prob = 0.008567052
Current: 001010 with probability 0.026380861 on rolling 0.938149097; last 0 prob = 0.970455980
Current: 0010101 with probability 0.025648040 on rolling 0.595421001; last O prob = 0.02777850
Current: 00101010 with probability 0.020074378 on rolling 0.114898273; last 0 prob = 0.7826866
Current: 001010101 with probability 0.018908726 on rolling 0.791199151; last O prob = 0.058066
sampled output vector: 00101010110100

time cost: 1.23308 milliseconds.

Measured 001010101 as 85 giving 0.166015625

Fractional approximation 1is 1/6

; Possible period is

; Unable to determine factors, we'll try again.

Let's take a free random crack at it without the OFT application...
Fractional approximation 1is 2/3

; 0dd denominator, trying to expand by 2.

; Possible period is 6

; Unable to determine factors, we'll try again.

About to do try 2 of sampling QFT applied to 1010101011010010100 with status now PROBS_ENUMERA
sampling with status PROBS_ENUMERATED:

Base probability for conditionals: 0.166015625000

Current: 1 with probability 0.083007813 on rolling 0.527169932; Tlast 0 prob = 0.500000000
Current: 10 with probability 0.055282593 on rolling 0.05137422/; last 0 prob = 0.665992647
Current: 100 with probability 0.027623324 on rolling 0.277237177; last 0 prob = 0.499674899
Current: 1000 with probability 0.027576410 on rolling 0.189192738; last 0 prob = 0.998301645
Current: 10000 with probability 0.027567765 on rolling 0.562397971; last 0 prob = 0.999686499
Current: 100000 with probability 0.027564179 on rolling 0.523783427; last 0 prob = 0.999869929
Current: 1000000 with probability 0.027562462 on rolling 0.694951445; last 0 prob = 0.99993770
Current: 10000000 with probability 0.027561612 on rolling 0.646817553; last 0 prob = 0.9999691
Current: 100000000 with probability 0.027561188 on rolling 0.353241189; last O prob = 0.999984
sampled output vector: 10000000010100

time cost: 1.2329 milliseconds.

Measured 100000000 as 256 giving 0.500000000
Fractional approximation is 1/2

; Possible period is 2

; Success: 21 = 3 * 7

Success after 2 xy sample(s) plus 2 QFT sample(s).

