
CSE439/510 Week 10: Details of Shor's Algorithm

 

 



 
The second backtrack point comes after the measurement.  A quantum technote: Because the 
measurement "collapses" the quantum state , in the actual quantum algorithm, backtracking here b

requires rebuilding the whole functional superposition---i.e., redoing the whole circuit.  But in my brute-
force quantum simulator, it can do another sample without having to re-create all the Boolean formulas 
that simulate the superposed applications of .f x  =  a  Ma( ) x mod

 

 

 



 
 
 
 
 
Analytical Goals of Shor's Algorithm (looking ahead to chapter 12)
 
The top-down goal is to find a number  such that  modulo  but  is not  or  X X ≡ 12 M X ≡ 1 ≡ -1

modulo .  Then  is a multiple of  but neither factor is zero.  When M X - 1 =  X - 1 X + 12 ( )( ) M

 with  prime, this means  and  each divide one or both factors.  We need to split them M = pq p, q p q

across the factors, so that  and/or  will find  and  as opposed to just X - 1, Mgcd( ) X + 1, Mgcd( ) p q

giving  back again.  Thus we want to guess  such that:M a

 

 



 
1. The period  of  is even, so that  is defined;r a r / 2

2.  modulo .X =  a  ≢  M- 1r/2 M

3. Either  or  is a multiple of one of  but not both.X - 1 X + 1 p, q
 
If our value of  fails either of these ("unlucky"), we just try again from the start of guessing .  a a <  M
 
Our treatment (blog post and chapter 12) also desires  to be a multiple of  or .  It can be r p - 1 q - 1

shown that many  give this "helpful" property, which requires .  a r ≥   ≈  p - 1 q - 1( )( ) M
 
(It is not clear whether we show this.  It could be an exercise: Consider numbers  that divide a product r

 of two nearly-equal composite numbers.  Conditioned on , give a lower bound for mn r ≥ m, nmin{ }

the proportion that are a multiple of  or a multiple of .  Note that  and  need not be themselves m n m n

relatively prime;  and  are both even, for instance.  It would still need to be argued that most  p - 1 q - 1 a

give such an .  But I am not sure that the "helpful" property is needed either.)r
 
Chapter 12 does handle the argument in property 3, given that  is "helpful"---which also subsumes r

issue 1 since  and  are even.  Issue 2 is handled by a random argument. p - 1 q - 1
 

We will see that the closer  is to  as opposed to being order-of , the more challenging for a r M M
potential classical simulation of Shor's algorithm.  
 
Another thing to observe is that when  is a Blum integer, meaning  and  are both congruent to  M p q 3

modulo , then  is divisible by  but no higher even number.  There are always four 4 p - 1 q - 1( )( ) 4

square roots of modulo , so we need to argue that the 's such that  is one of the good 1 M = pq a ar/2

ones are as plentiful as the bad ones.  (Note that  depends only on .)  Here is an example for the r a

smallest Blum integer: .  The quadratic residues are:21 =  3*7
 
1 : 1,      2 : 4,   3 : 9,   4 : 16,     5 : 4,    6 : 15,     7 : 7,  8 : 1,    9 : 18,    10 : 16,  

20 : 1,  19 : 4,  18 : 9,  17 : 16,  16 : 4,  15 : 15,  14 : 7,  13 : 1,  12 : 18,  11 : 16 
 
Now .  The numbers , , , and  all give a factor via p - 1 q - 1 = 12( )( ) Y = 8 - 1 8 + 1 13 + 1 13 - 1

.21, Ygcd( )
 

: ; of course doesn't work.a = 1 r = 1

.    Worksa = 2 :  2, 4, 8, 16, 11, 1

  (period  is odd)a = 4 :  16, 1 3

; doesn't work because .a = 5 :  4, 20, 16, 17, 1 20 ≡ -1

.  Period  is "helpful" and  is not .  So works.a = 8 :  8 ≡ 12 r = 2 8 = 8r/2 -1

.  Worksa = 10 :  16, 13, 4, 19, 1
The other values are mirror images.

 

 

https://rjlipton.com/2011/12/10/a-lemma-on-factoring/


 
A more interesting Blum integer IMHO is .  Then .  "Helpful" means the 77 = 7*11 p - 1 q - 1 = 60( )( )

period is a multiple of  or of .  Note:  is a nontrivial square root of  and 6 10 34 = 1156 = 77*15 + 12 1

is the other one.  Does  work?43  = 1849 =  77*24 + 1 2 2
 

etc.: yes.2 : 4, 8, 16, 32, 64, 51, 25, 50, 23, 46, 15, 30, 60, 43, 9, 18, 36, 72, 67, 57, 37, 74,
 
The next question is whether it is OK for the quantum part to obtain a multiple  of a helpful .  If  r' = br r b

is even than certainly not, because  will be .  But if  is odd---?  In any event, we can obviate this ar'/2 1 b

question because we can single out the minimum  with sufficiently high probability.  r
 
The key auxiliary technical notion is a number  that is "good" to help find .x r
 
 
 

 
The first key part (used later) is the multiple  of  being relatively prime to .  The second key part is t Q r

that there is a 1-to-1 correspondence between 's and good 's.  So the number of good 's equals the t x x

size of .  Now unlike with , which is , we don't know  since  could Gr |G | =  p - 1 q - 1M ( )( ) ∼ M |G |r r

have any manner of factors.  But there is a bound that is almost as good as proportionality:
 
If , where  means using  rather than  for the modular tQ =  k ' rmod 'mod -r / 2, r / 2[ ] 0, r - 1[ ]

values, then we get  for some unique , where .tQ =  k +  xr x -r / 2 ≤  k ≤  r / 2
 

 

 



 
 
The general drift is that a good  gives a good chance of finding  exactly, by purely classical means.  x r
Of note:
 

 
This makes  where  the "vat" of hard cases: too sparse to guess at random.  r ≈  M1-𝜖 0 <  𝜖 <  1

For the quantum part, however, we need . Q >  rM

 

 



Simulation Interlude
 
Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm.  It pretty much 
builds the concrete "mazes" for  qubits and simulates all the legal "Feynman mouse paths" ℓ + n

through them.  The run of my simulator on  and  succeeded on the second try:M = 21 a = 5

 

 



 
[Show demo]

 

 


