
CSE439 Week 13: Matrix Algebra and the SVD
 
What happens if we try to take the "inner product" of two  matrices  and  by first "unrolling" m × n A B
them as vectors?  Remembering to conjugate the entries of , we getA
 

⟨A, B⟩ =  B i, j .∑
 

i=1,m
j=1,n

A i, j⏨⏨⏨[ ] [ ]

 
Now let .  Since  is , this is an  square matrix.  From C = A B* A* n × m n × n

C r, s = A r, k B k, s  =  B k, s[ ] ∑
m

k=1

*[ ] [ ] ∑
m

k=1

A k, r⏨⏨⏨[ ] [ ]

we get that the diagonal entries of  are .  Hence the diagonal sum givesC C r, r = B k, r[ ] ∑
m

k=1
A k, r⏨⏨⏨[ ] [ ]

C r, r  =  B k, r  =  ⟨A, B⟩∑
n

r=1

[ ] ∑
 

k=1,m
r=1,n

A k, r⏨⏨⏨[ ] [ ]

as we defined it above.  The diagonal sum at left is called the trace, with notation .  Now for a Tr C( )

vector , the self inner-product  gives the squared Euclidean norm of , written , so v ⟨v, v⟩ v ||v||2
2

.  The analogous concept for matrices is the Frobenius norm, named for Ferdinand ||v||  =  2 ⟨v, v⟩
Georg Frobenius:
 

.||A||  =  F Tr A A*

 
Or you can simply say it's the Euclidean 2-norm of the vector obtained by "unrolling" the matrix.  This 
norm, however, overstates the action of the matrix in Euclidean space, which involves its  m × n
dimensions.  This is
 

.   ||A||  =  ||Av|| :  v is a unit vector of length n2 sup{ 2 }
 
For some further remarks: Since our vectors are finite-dimensional, the "ball surface" of unit vectors is 
compact, which actually means that there is a definite vector  that maximizes  rather than just v ||Av||2

having a limit---so we can write "max" in place of "sup" for "supremum."  The task of finding such a 
vector  is the main algorithmic need of computing the singular value decomposition (SVD) as v
treated below.  It tumbles out of the SVD Theorem that  for every matrix .  But the ||A||  ≤  ||A||2 F A
inutition is that  tells the most that  can "stretch" a vector along the fixed dimensions it operates ||A||2 A
on, whereas  is the maximum amount of "stretch" that the entries of  could give under any ||A||F A
configuration of dimensions.
 
 

 

 

 



Trace, Density Matrices, and Measurements
 

When we do  for a quantum state vector , the diagonal entries  of the 𝜙 𝜙 𝜙 = a , … , a[ 1 N]T aia⏨i

outerproduct give , which equals  since  is a unit vector.  Since a density matrix  is a linear ||𝜙||2
2 1 𝜙 𝜌

combination of outerproducts  by weights summing to , the trace  is also 1.  Now when a 𝜙 𝜙 1 Tr 𝜌( )

unitary matrix  acts on , the density matrix of the resulting vector  isU 𝜙 U𝜙
 

. =  U  =  U UU𝜙 U𝜙 U𝜙 𝜙 * 𝜙 𝜙 *

 
By linear additivity, a unitary operator acts on a mixed state  by the double action .  Put all this 𝜌 U𝜌U*

together, and the rule is that the trace of a density matrix is always .  The action by unitary matrices 1

preserves the trace.  Ultimately this is just the idea of probabilities summing to .1
 
These ideas play into the most general idea of measurement on which there is wide consensus.  It 
generalizes the notion of a projective measurement of a pure state.  Recall that a positive semidefinite
 (PSD) matrix is one of the form  for some matrix .  M M* M
 
Definition: A positive operator valued measure (POVM) is a set  of PSD matrices such E , … , E{ 1 m }

that  (text has  there, is it a typo?).  Given a mixed state  the probability  of E  =  I∑m

j=1 j E E*
j j 𝜌 pj

outcome  is given byj
 

.p  =  Tr E 𝜌j ( j )

 
If a PSD representation  is specified for each  (it might not be unique, but specifying it is E  =  M Mj

*
j j j

part of the measurement apparatus) then the next state is

 .𝜌' =  
M 𝜌M

p

j
*
j

j

 

We can use this to answer a natural question: How does the mixed state  differ from the +
1

2
0 1

quantum superposition ?  Besides the different constant, there is a difference in  =  ++
1

2
0 1

meaning that dictates that when mixed states are involved, we really need to use the density matrix 

representation of both.  So we are really talking about  versus .  We have +
1

2
0 0 1 1 + +

that the former is 
 

+   =   
1

2

1 0
0 0

0 0
0 1

0.5 0
0 0.5

while the latter is

 

 



.  =   
1

2

1 1

1 1

0.5 0.5

0.5 0.5
 
Both matrices have trace ; the difference is that  hasd non-zero off-diagonal elements.  1 J = + +

Also , which is the definition of when a density matrix represents a pure state.  Now we know that J = J2

, which the density matrix under the double-action rogers:H =+ 0
 

,H H =   =   =   =  
0.5 0.5
0.5 0.5

1

4

1 1
1 -1

1 1
1 1

1 1
1 -1

1

4

2 2
0 0

1 1
1 -1

1

4

4 0
0 0

0 0

 
whereas 
 

H H =  HH =  I =  +
0.5 0
0 0.5

1

2

1

2

1

2
0 0 1 1

 
back again.  So whereas Alice would measure  with certainty if she applied Hadamard to , when 0 +

she does so to her mixed state she will still get  with only 50% probability.  The kicker is that if she 0

instead measures in the  basis, whether before or after applying the Hadamard gate, she ,+ -

will get those outcomes with 50% probability each.  Thus "a mixed state does not remember which pure 
states were used to define it."  The only reality it has---at least the only reality that we can know---is its 
density matrix.
 
 
Traceout and Spectral Purification
 
[I have decided to insert this material after all.]
 
A further rule involving density matrices and tensor products starts from pure states  and .  𝜙 𝜓

Recall that the adjoint  is .  That is, we don't reverse the ( ⊗𝜙 𝜓 )*
⊗  =  ⊗𝜙

*
𝜓

*
𝜙 𝜓

product as we would with ordinary matrix multiplication.  The indexing is "tiered" in the form  state xy( )

where  pertains to the space of  ("Alice") and  to the space of  ("Bob").  So now involving x 𝜙 y 𝜓

outerproducts and running indices  over Alice's row space and  over Bob's:u v
 

.⊗ ⊗ uv, xy  =  ⊗ uv ⊗ xy  = 𝜙 u 𝜓 v𝜙 𝜓 𝜙 𝜓 [ ] 𝜙 𝜓 [ ] 𝜙 𝜓 [ ] ( ) ( )𝜙 x⏨⏨( )𝜓 y⏨⏨( )

 
Whereas,
 

,⊗ uv, xy  =  ux vy  =  𝜙 u 𝜓 v𝜙 𝜙 𝜓 𝜓 [ ] 𝜙 𝜙 [ ] 𝜓 𝜓 [ ] ( )𝜙 x⏨⏨( ) ( )𝜓 y⏨⏨( )

 
which is the same.  Note that the left-hand side of the second equation is the tensor product of two pure 

 

 



density matrices.  By additive linearity for tensor products, this proves the general rule:
 

The density matrix of two unentangled systems can be represented as the tensor product of 
density matrices of the respective systems.  In symbols: .  (Here we understand 𝜌  =  𝜌 ⊗ 𝜌A,B A B

identity up to multiplication by unit scalars.)  
 
A nifty point is that we can semi-invert this process even when Alice and Bob are entangled.  The 
operation is called the traceout.  It is easiest to picture and execute when we apply it to the second tier 
of the whole space, i.e., in "tracing out Bob."  It is also called the partial trace  mapping elements TrB

of the "higher space"  to the space .  Given the density matrix  of the whole system:A⊗B A 𝜌

 
• Block out  into square submatrices as-if it were a tensor product .  If Bob holds  qubits, 𝜌 A⊗ B k

then the submatrices will be . 2 × 2k k

• Replace each submatrix by its trace.  When you consider the submatrices on the main diagonal, 
you can see the overall trace is unchanged---it is still  as it must be for .1 𝜌

• The resulting matrix is the density  for Alice "after tracing out Bob."𝜌A

 
There is also a matrx  of Bob "tracing out Alice."  However, it need not follow that .  That 𝜌B 𝜌 = 𝜌 ⊗ 𝜌A B

happens if (and only if? the things that occur to you on the second pass...)  Alice and Bob were initially 
unentangled.  In that case, all of the "Bob" submatrices have trace .  The effect is the same---in the 1

case above where Alice and Bob are pure states---as substituting .  This leaves 𝜓 v = 𝜓 y = 1( ) ( )

, which is the  entry of Alice's outerproduct .𝜙 u( )𝜙 x⏨⏨( ) ux 𝜙 𝜙
 

Example 1: The traceout of the entangled state  is done by+
1

2
00 11

 

,Tr   =     =   B
1

2

1 0 0 1
0 0 0 0

0 0 0 0

1 0 0 1

1

2

1 0
0 1

0.5 0
0 0.5

 
which is the density matrix of the completely mixed state again.  Notice incidentally that 

 gives exactly the same pure-state vector , even before we take its +
1

2
++ -- 1, 0, 0, 1

1

2
[ ]T

outerproduct to get the above  density matrix.  This all reinforces that Alice applying  or 4 × 4 H

whatever unitary operation on her half of the entangled pair has no effect on the current state of her 
knowledge of it, which is represented by the density matrix.
 

Example 2: The pure state  from the "practice Prelim II" has the + + -
1

2
000 001 110 111

following density matrix, with the big-endian indexing included:
 

 

 



1

4

 000 001 010 011 100 101 110 -111

000 1 1 0 0 0 0 1 -1
001 1 1 0 0 0 0 1 -1

010 0 0 0 0 0 0 0 0

011 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0
110 1 1 0 0 0 0 1 -1
-111 -1 -1 0 0 0 0 -1 1

 
Notice that the two off-diagonal traces cancel.  So tracing out the third qubit leaves:
 

. =  
1

4

2 0 0 0

0 0 0 0
0 0 0 0

0 0 0 2

0.5 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0.5
 
This is not the density matrix of an entangled pair.  Nor is it even the completely mixed state on two 
qubits.  It is the mixture .  Its tensor product with Bob holding  is not 0.5  +  00 00 11 11 +

the same as the above density matrix---the corners stay zeroed out.  Thus the fact that the above pure 
state is entangled carries through here as well.
 
Whereas, if we use a  gate---or just a  gate on the second and third qubits---then the minus CCZ CZ

sign flips to make .  Now the pure density matrix is+ + +
1

2
000 001 110 111

 

1

4

 000 001 010 011 100 101 110 111

000 1 1 0 0 0 0 1 1

001 1 1 0 0 0 0 1 1

010 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0

110 1 1 0 0 0 0 1 1
111 1 1 0 0 0 0 1 1

 

Tracing out Bob does leave the density matrix  of the pure state  in 1

2

1 0 0 1

0 0 0 0
0 0 0 0
1 0 0 1

+
1

2
00 11

Alice's hands.  And the whole system truly is ( .  Here is the + ⊗ +
1

2
00 11

1

2
0 1

quantum circuit, including the final  gate:CZ

 

 



 
The interpretation that might go with this is that the first two Hadamard and CNOT gates tried to 
entangle qubits 1 and 3 and then entangled 2 and 3.  The hope was that by "entangling 3 twice" we 
could actually disentangle it and leave 1 and 2 entangled.  This didn't quite work, but it does work if we 
apply the  gate after the second Hadamard gate.  The subject of entanglement swapping CZ

commonly needs 6 qubits to illustrate, but this gives some of the flavor at smaller scale.
 
One more notable fact:
 
Theorem: For every mixed state  on  qubits there is a pure state  on  qubits such that tracing 𝜌 n 𝜅 2n
out the last  qubits in  leaves exactly .n 𝜅 𝜅 𝜌
 
Proof: Because  is Hermitian, we can find an orthonormal basis  (where  as usual) 𝜌 u , … , u1 N N = 2n

and real eigenvalues  such that .  This gives a 𝜆 , … , 𝜆1 N 𝜌 =  𝜆 + ⋯ + 𝜆1 u1 u1 N uN uN

diagonal matrix in the coordinates of the eigenbasis, but we can apply a unitary change of basis  to U
make  diagonal in the standard basis.  Since we've seen that this double-action preserves the U𝜌U*

trace, which is  in , we get .   (Note how this says  is far different from a unitary 1 𝜌 𝜆 + ⋯ + 𝜆 = 11 N 𝜌

matrix, even a unitary matrix that is Hermitian, because those have each individual eigenvalue being of 
magnitude .)  Now define1
 

.𝜅 =  𝜆1( ⊗  +  ⋯  +  ⊗u1 u1 ) 𝜆N uN uN

 

This is a legal pure state because the squares of the amplitudes  sum to .  So let us apply the 𝜆i 1

traceout to .𝜅 𝜅
 
When we do  , we get cross-terms but they stay within each -qubit tier of the whole Hilbert 𝜅 𝜅 n
space---by the point we observed at the beginning of this section.  Within each tier, they have the form 

 with  (multiplied by ).  Now the main diagonal of this outerproduct is ui uj i ≠ j 𝜆 𝜆i j

, which is exactly the inner product .  This in turn is zero because  and  u k∑N

k=1 i( )u k⏨⏨⏨j( ) uj ui ui uj

are orthogonal.  So taking the trace of these ``Bob'' submatrices makes the off-diagonal components of 
the traceout vanish without a trace.  The only survivors are the terms 
 

.   =  𝜆u ⊗ u𝜆i i i u ⊗ u𝜆i i i i u ⊗ ui i u ⊗ ui i

 

 

 



Now tracing out "Bob" in these submatrices just substitutes  for the second , leaving1 ui

 
, 𝜆 + ⋯ + 𝜆1 u1 u1 N uN uN

 
which is the original  back again.  𝜌 ☒
 
There are other possible pure states on higher numbers of qubits that can do the same.  In Example 2 
above, we saw that the 2-qubit mixture   is the traceout of the 3-qubit pure 0.5  +  00 00 11 11

state , where we got the off-diagonal cancellations without needing + + -
1

2
000 001 110 111

to go to a full-blown spectral representation.  Moreover, the Bell pair  is exactly the +
1

2
00

1

2
11

 from the completely mixed state , which is already in spectral form.  The 𝜅 +
1

2
0 0

1

2
1 1

general name for this process is mixed-state purification.  It often happens that the neatest way to 
calculate or prove results about mixed states is to "lift" them to pure states in a larger space, calculate 
in the higher space, and then trace back down.  John Smolin of IBM T.J. Watson gave this technique 
the evocative name of "appealing to the church of the higher Hilbert Space."
 
 
Quantum Ontology and Epistemology
 
Ontology has to do with being; epistemology with knowing.  We have taken the view that pure states 
"are"---that is, they have existence unto themselves.  We represent them as state vectors, but at 
exponentially high cost in many cases.  For properly mixed states , this is less clear.  We can regard 𝜌

some pure state  from a higher space that traces out to it as its ontology, but (a)  is far from 𝜅 𝜅

unique, and (b) as indicated by the use of " " in the last proof, it often comes at exponential cost.  N
 
The epistemological side, however, has given a remarkably consistent set of answers for over a century 
now:
 

• The only way we can gain knowledge about a quantum state, whether pure or mixed, is by 
measuring it.

• All measurements of a pure state  go---explicitly or implicitly---through its density matrix 𝜙

.𝜌  =  𝜙 𝜙 𝜙
• Operations on density matrices "gibe" with measurements and probabilities in ways already 

prescribed by (Bayesian!) conditional inferencing.
• All scalar quantities involved in this reckoning are real numbers denoting (conditional) 

probabilities, not "amplitudes".
 
The last point is part of why Richard Lipton and I have mused about giving an account of quantum 
reality without complex numbers.  For the above, where Hermitian not unitary matrices are primary, 
complex numbers need only be seen in components of orthonormal eigenvectors , such as ui

 

 



 and  on both the practice and actual Prelim II.  For reality, however, the u = 1, i1
1

2
[ ]T u = i, 12

1

2
[ ]T

notion of phase seems inescapable, and complex numbers (IMPHO) give its best treatment.  There are 
wide indications that Bloch spheres---in higher dimensions as well as for single qubits---are physically 
real.  They give a description via two real numbers  and ; note that  is a probability, not an 𝜃 𝜑 𝜃cos( )

amplitude.  However,  is a phase angle and governs whether and where complex numbers appear in 𝜑
other figuring.  So Reality strikes back but doesn't completely subjugate the complex realm, which is 
necessitated by the Fundamental Theorem of Algebra anyway.
 
This finally leaves the super-skeptical question of whether there is a bedrock of being beneath what is 
knowable.  One form of this question is whether the notion of an observer---often styled as a conscious 
observer---is essential to existence.  This idea long predates quantum mechanics.  It was formulated as 
philosophical subjective idealism by the Irish Anglican bishop George Berkeley in the early 1700s, 
whom the city of Berkeley in California is expressly named after.  It is well captured by the following pair 
of limericks---my mod of what Fr. Ronald Knox wrote two centuries later:
 

A divinity student said, "God
Must find it exceedingly odd
That the Warden's plum tree
Continues to be
When there's no one about in the Quad."

 
And the reply as Knox imagined in a newspaper's Letters column:
 

"Dear Sir, your perplexity's odd.
I am always about in the Quad.
So the Warden's plum tree
Shall continue to be,
Since observed by---
      yours faithfully,  ---God."

 
Whether the advent of quantum mechanics enhances such arguments over the pervasive presence of 
an unseen benevolent God is not something I choose to amplify.  Lipton and I broadly sympathize with 
Samuel Johnson's reply of refuting Berkeley by kicking a stone---fully aware that the kick involves the 
exertion of quantum mechanical electric force on a surface whose solidity is effected by vibrating 
molecules.  Speaking for myself as a Christian, I hold a halfway position toward fideism that disclaims 
logical proof and reproducible knowledge of God, and I regard this as merely orthodox.  There is, 
however, considerable reason to assert the pervasive presence of an unseen---and vaguely malign(?)---
"Bob" in the form of entanglements with unknown systems, even going back to the Big Bang.  
Entanglements with outside nature, developed both now and prior, are the current best explanation for 
decoherence.  The above illustrations of Tom Brady-style "deflation" in off-diagonal parts of density 
matrices are well representative of decoherence.  
 

 

 



Staying completely with "Nature's Rose", we will conclude with the matter of classical simulation of 
quantum algorithms, via advanced computational methods.  First on the list is the Singular Value 
Decomposition, which is the closest an arbitrary---not even square---matrix can come to the blessings 
of both unitary and Hermitian properties.
 
 
The SVD
 
A matrix  is (pseudo-)diagonal if it is (non-)square and  whenever .  It follows that both S S i, j = 0[ ] i ≠ j

 and  are diagonal square matrices.  Some of the diagonal entries may be .S S* SS* 0
 
SVD Theorem: For every  matrix  we can efficiently find:m × n A

• an  unitary matrix ,m × m U
• an  pseudo-diagonal matrix  with non-negative entries , andm × n 𝛴 𝛴 i, i = 𝜎[ ] i

• an  unitary matrix ,n × n V
such that .  Furthermore, we can arrange that , and in A =  U𝛴V* 𝜎 ≥ 𝜎 ≥  ⋯  ≥ 𝜎1 2 m,nmin( )

consequence:

• .||A||  =  F 𝜎∑
 

i
2
i

• ,||A||  =  𝜎2 1

• , andA A =  V𝛴 U U𝛴V  =  V diag 𝜎 V* T * * 2
i

*

• ,AA  =  U𝛴V V𝛴 U  =  U diag 𝜎 U* * T * 2
i

*

so that the squares of the  and associated vectors give the spectral decompositions of the Hermitian 𝜎i

PSD matrices  and , respectively. A A* AA*

 
The  are the singular values.  The number  of positive ones equals the rank of .  Whereas some 𝜎i r A
of the  can be negative in the Spectral Theorem---when the Hermitian matrix is not PSD---none of the 𝜆i

 is negative.  The first  columns of  form an orthonormal basis for the subspace  spanned by the 𝜎i r U W

columns of  (called the column space of ), while the first  columns of  form an orthonormal basis A A r V
for the column space of .  The latter is identical to the row space of  when  is a real matrix---and A* A A
in that case,  and  come out being real as well.  The remaining  columns of  form an U V m - r U
orthonormal basis for the space , which is also the nullspace of .  As with the Spectral W

⟂ A*

Theorem, the basis vectors are not unique when there is multiplicity or when we don't have , r = m = n
but the values  are unique (when sorted in nonascending order, so we can say the matrix  is unique 𝜎i 𝛴

too).  Once  and  are specified, we get  too.U V 𝛴 =  U AV
*

 
Proof: The procedure works by recursion through subspaces and so resembles the proof of the 
Spectral Theorem.  The first and top-level step is most emblematic.  It begins by finding a unit vector  v1

that maximizes .  Then  is the first and biggest singular value.  It can't be zero ||Av ||1 2 𝜎 = ||Av ||1 1 2

(unless  is the all-zero matrix, in which case we've "hit triviality"), soA

 

 



 

u  =  1

Av

𝜎

1

1

 
is a unit vector.  If there are more than one maximizing unit vectors  then we will get multiplicity, but let v
us first suppose that the  and associated  are unique.  Before doing the recursion, we may v1 u1

postulate that  is arbitrarily extended to an orthonormal basis  of  (or of  in the real case) u1 U1 C
m

R
m

and  to an orthonormal basis  of .  In the resulting coordinates, we getv1 V1 C
n

 

U AV  =   =  S*
1 1

𝜎1 w
*

1

0 B
1

 
for some vector  of length  and  matrix .  The red  stands for  zeroes w1 n - 1 m - 1 × n - 1( ) ( ) B 0 m - 1

and is because  so there is no dependence on the other  coordinates.  The goal is to Av = 𝜎 u1 1 1 m - 1

prove that  must be all-zero too.  Then recursing on  will hammer out the (pseudo-)diagonal matrix w1 B
.𝛴

 

Let  as a column vector.  Then  .  Ignoring the  part, we get w =
𝜎1

w1

S w =  w' =1
𝜎 + w w2

1
*
1 1

Bw1

Bw

.  The right-hand side equals .  Dividing by  hence gives us||w'|| ≥  𝜎 + w w2
1

*
1 1 ||w||2 ||w||2

 

. ≥  ||w||  =  
||S w||

||w||

1 2

2
2 𝜎  +  w w2

1
*
1

 

Now if  is nonzero, then  is a positive real number, so .  Under the definition of w1 w w*
1 1  >  𝜎

||S w||

||w||

1 2

2
1

the 2-norm for matrices, this means  .  But ||S ||  >  𝜎1 2 1

 
||S ||  =  ||U AV ||  =  ||A||1 2

*
1 1 2 2

 
because  and  are unitary.  And  by how we defined .  This is a contradiction U1 V1 ||A || =  𝜎2 1 𝜎1

saying " ."  The only way out is for  to be a zero vector.𝜎 > 𝜎1 1 w1

 
The recursion then takes place on the perpendicular subspace of , or in general, the perpendicular v1

subspace of the span of the orthogonal unit vectors  chosen thus far.  The final point is that the vj

corresponding vectors  also come out orthogonal.  This is because, when  (and at stages where uj i ≠ j
 and  are both nonzero---else we are in the base case of completing orthonormal bases on the 𝜎i 𝜎j

nullspaces):
 

,𝜎 𝜎  =   =   =  v A Av  =  v 𝜎 v  =  𝜎  =  0i j ui uj 𝜎 ui i 𝜎 uj j Avi Avj
*
i

*
j

*
i

2
j j

2
j vi vj

 

 



 
finally using the orthogonality of the  vectors.  The fourth equality happens because  is an vi vj

eigenvector of  with eigenvalue .  The reason given by the (short!) proof in the MIT notes A A* 𝜎2
j

(https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf) is that
 

,A A =  U𝛴V U𝛴V  =  V𝛴 U U𝛴V  =  V𝛴 𝛴V* *
*

* T * * T *

 
which in turn converts to the way we have been writing the spectral decomposition since  is unitary.  V
However, substituting  strikes me as assuming what one is trying to prove about the  U U = I* ui

vectors.  
 
To tie up the loose end, we choose to restart the proof.  We apply the original Spectral Theorem to the 
Hermitian PSD matrix  to get nonnegative eigenvalues ---listed in nonincreasing order---A A* 𝜆 , … , 𝜆1 n

and orthonormal eigenvectors  such thatv , … , v1 n

 
,A A =  𝜆  +  ⋯  +  𝜆  =  V diag 𝜆 V*

1 v1 v1 n vn vn
* ( i)

 
taking  as the matrix with the eigenvectors as its columns.  Now define  to be the nonnegative V 𝜎i

square root of  for each .  Since the rank  of  equals the rank of , we get  for  to . 𝜆i i r A A A* 𝜎 > 0i i = 1 r
 For these , definei

.u   =   i

Av

𝜎

i

i

 
Now the above demonstration that  is logically valid, because we arranged that  is = 0ui uj 𝜎  = 𝜆2

i i

an eigenvalue of  with eigenvector  in advance.  What we've lost, however, is the original proof's A A* vi

definition of  so that  is a unit vector.  We recover it, however, this way:𝜎i ui

 

.= = v A Av  =  v 𝜆 v  =  v v  =  1ui ui

Av

𝜎

i

i

Av

𝜎

i

i

1

𝜎2
i

*
i

*
i

1

𝜎2
i

*
i i i

*
i i

 
And  is an eigenvector of  becauseui AA*

 

.AA u = AA  =  A A A v  =  A𝜎 v  =  𝜎 Av  =  𝜎 u*
i

*
Av

𝜎

i

i

1

𝜎i

*
i

1

𝜎i

2
i i i i

2
i i

 
For , we can arbitrarily complete the basis by choosing orthonormal vectors that span the i > r
nullspace.
 
So now the only thing we've "lost" compared to the first proof strategy is the fact that at the first and 
each later step of the recursion, the choice of unit vector  maximizes .  However, now we can vi ||Av ||i 2

 

 

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


appeal to the uniqueness of the  and "quasi-uniqueness" of the eigenvectors up to the flex of 𝜆i

multiplicity.  The squares of the  and the  must coincide.   What comes out is a deep fact that the 𝜎i 𝜆i

largest eigenvalues of  naturally pick out the directions in which  stretches the most.  A A* A ☒
 
Corollary: For a square matrix  already of the form  (and that goes for any Hermitian PSD A E E*

matrix), the SVD and spectrum of  coincide with .E U = V
 
Proof. The diagonal form  has the specified properties; because  is PSD, the  are E = U𝛬U* E 𝜆i

nonnegative, and we can arrange  so that the diagonal is in nonincreasing order. U ☒
 
In all other cases where  is diagonalizable, there are reasons for saying the SVD gives more A
information than the diagonalization.  This is especially so with upper or lower traingular matrices---see 
example below.  And of course, there are many square matrices that can't be diagonalized...to say 
nothing of non-square matrices...for which the SVD is the only game in town.
 
Our two-pronged proof suggests two different algorithms for computing the SVD of a matrix :A
 

• Diagonalize  to get 's and , then  and .A A* 𝜆i V 𝜎 =i 𝜆i u =i
Av

𝜎

i

i

• Find a unit vector  maximizing  and recurse.v ||Av||2

 
Other methods come into play when  has certain particular features.  Niloufer Mackey developed new A
methods in her 1993 UB CS PhD dissertation under Patricia Eberlein.
 
 
Examples and Applications
 
In any upper or lower triangular matrix , the elements of the diagonal are the eigenvalues.  They are A
thus independent of all the off-diagonal entries at upper right.  Those entries have information that does 
get picked up by the SVD.  The two examples in the MIT notes are good for this.
 
Example 1:
 

A =  
3 0
4 5

A  =  A  =  * T 3 4

0 5

   A A =  =* 9 + 16 20

20 25

25 20

20 25
AA  =  =* 9 12

12 16 + 25

9 12

12 41
 
 
 

 

 



Example 2:
 

A =  

0 1 0 0

0 0 2 0
0 0 0 3
𝜖? 0 0 0

 

 

 


