
CSE439 Week 3: Qubits and Quantum Circuits (chapter 4 plus sections 5.1--5.3)

[The flow of Chapter 4 as written is to take the classical notion of computations by machines as given.
When CSE396 was a required course at UB, everyone saw Turing machines (TMs); those may have
been talked about briefly in CSE331, but otherwise the "random-access machine" concept of executing
algorithms from that course is fine. (The one advantage of TMs is that you can say that their tape cells
numbered 1,2,3,... represent "classical bits" that evolve over time, in analogy to the way we will speak
of qubits evolving over time.) Now, however, we will take the classical Boolean circuit model as
fundamental while contrasting it directly to quantum circuits. The strongest linkage is that the quantum
Toffoli gate can simulate NAND and hence do all classical Boolean operations by itself. This is shown
in section 5.3, though. Section 5.1 has the -fold tensor product of the basic Hadamard n H⊗n 2 × 2
matrix , which we have already seen, anyway. So please read all the above as one block.]H

Unitary Versus Stochastic (section 3.6)

A (doubly) stochastic matrix has the property that its rows (and columns) are nonnegative real
numbers that sum to . A simple example is1

J = 0.5 0.5
0.5 0.5

However, while is Hermitian (like any symmetric real matrix), it is not unitary: , not the J JJ = J = J* 2

identity. There are doubly stochastic matrices that are not Hermitian either when we go up to , 3 × 3
e.g.:

1 / 2 1 / 3 1 / 6
1 / 2 1 / 6 1 / 3

0 1 / 2 1 / 2

However, every permutation matrix is both doubly stochastic (in the trivial manner of having a single 1
in each row and column) and unitary. A less trivial example of symmetric (Hermitian) doubly stochastic
matrices arise from undirected graphs that are regular---meaning every vertex in has the same G G
degree (meaning: number of edges connecting to it). The text in section 3.6 gives an example where
negating some of the entries does create a unitary matrix. However, this is not a regular phenomenon
as far as I know.

Operations: Joint and Entangled

Here is a statement that uses a lot of notational fuss to express the simplest of ideas:

Proposition: For any matrix , matrix , -vector and -vector , m × n A p × q B n x q y

. Ax ⊗ By = A ⊗ B ⋅ x⊗ y() () () ()

Proof. The dimensions are consistent: both sides give a column vector of entries. Showing mp
equality is where our effort to interpret vectors as functions of their indices in binary notation may x x u()
help. Under this view, gives the function , where means z = x⊗ y z uv = x u y v() () () uv
concatenation of binary strings, while the right-hand side is an ordinary numeric product. And a matrix

 gives the two-argument function . A A u, w = a() u,w

0.5, 0.5, - 0.5, 0.5 ⊗ 0.6, 0.8 = 0.3, 0.4, 0.3, 0.4, - 0.3, - 0.4, 0.3, 0.4[] [] []

Indices: : 000, 001, 010, 011, 100, 101, 110, 111[] 100 = 10 ⋅ 0 -0.3 = -0.5 0.6 .()()

Silly? style note: When we think of vector and matrix entries the way we usually do, we will use square
brackets like in the text, e.g.: , . When the indices are regarded as binary strings rather than x i[] A i, j[]
numbers, we will write things like and below, where .A u, w[] C uv, wt[] C = A⊗ B

The vector becomes the function mapping a row-index to . Thus, x' = Ax u x' u = A u, w x w() ∑
w () ()

putting , the right-hand side is the functionz' = Ax ⊗ By() ()

z' uv = x' u y' v = A u, w x w ⋅ B v, t y t() () () ∑
w () () ∑

t () ()

Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as

A u, w B v, t x w y t∑
w ∑

t () () () ()

With , we can already recognize that the part is the same as . And z = x⊗ y x w y t() () z wt()

 is the same as . So the whole thing becomesA u, w B v, t() () A ⊗ B uv, wt()()

,A ⊗ B uv, wt ⋅ x⊗ y wt∑

w,t()() ()()

which is exactly the meaning of . So the two sides are equal. A ⊗ B ⋅ x⊗ y() () ☒

The simple idea is that does the operation on side-by-side with doing its A ⊗ B ⋅ x⊗ y() () A x B
operation on , but with no connection at all between them. We will soon have diagrams like this---y

Ax

y B

Ax

By

==

---note that we picture the inputs coming in from the left but when writing them as matrix arguments
they will swing around to the right. As a tandem, this is formally the tensor product coming in to x⊗ y

. But really---and locally---it is just happening in one place and happening A ⊗ B() Ax By
independently in another place. The upshot is this:

When we have entanglement, not independence, between the part and the part, then the x y
notation will stay the same but the interpretation will change a whole lot.

Qubits

A qubit is a physical system whose state is described by a pair of complex numbers such that 𝜙 a, b()

. (This is called the Born Rule, after Max Born.) The components of the pair index |a| + |b| = 12 2

the basic outcomes and . There are two ways we can gain knowledge about the values and :0 1 a b

• We can prepare the state from the known initial state by known quantum e = 1, 00 []
operations, which here can be represented by matrices.2 × 2

• We can measure the state (with respect to these basic outcomes), in which case:
– We either observe , whereupon the state becomes , or we observe , in which case the 0 e0 1

state becomes .e = 0, 11 []
– The probability of observing is , of getting is .0 |a|2 1 |b|2

If both and are real numbers, then we can picture the qubit as a point on the unit circle in :a b R2

What can be confusing in the diagram is that we also habitually use the unit circle in to illustrate a R2

single unit complex number , that is, an element of of magnitude . We would then write c C1 1
, and then is the same as . Our pair of complex numbers, c = a + bi |c| = 12 a + b = 12 2 a, b()

however, is an element of , which is 4-dimensional if we tried to view it in real space.C2

0, 1()

1, 0()

a, b()

𝜃

a| + |b| = 1| 2 2

a = 𝜃cos

b = 𝜃sin

-

+

0

1

The qubit represents a, b() ae + be = a 1, 0 + b 0, 1 = a + b0 1 () () 0 1

ket

a = 1 / 2
b = ditto

a = 1 / 2
b = - 1 / 2

22.5 , 22.5cos ∘ sin ∘

0, -1() ae - be /(0 1) 2

Multi-Qubit Matrices and Gates

The tensor product of two basic Hadamard gates is

.H = H ⊗H = ⊗ =⊗2 1
2

1 1
1 -1

1 1
1 -1

1
2

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

This matrix carries the orthonormal two-qubit standard basis , , , onto the four e00 e01 e10 e11

combinations of tensoring the and states, namely (transpose omitted):+ - { }T

 = ⊗ = 1, 1 ⊗ 1, 1 = 1, 1, 1, 1 =++ + + 1
2() () 1

2() + + +
2

00 01 10 11

 = ⊗ = 1, 1 ⊗ 1, -1 = 1, -1, 1, -1 =+ - + - 1
2() () 1

2() - + -
2

00 01 10 11

 = ⊗ = 1, -1 ⊗ 1, 1 = 1, 1, -1, -1 =- + - + 1
2() () 1

2() + - -
2

00 01 10 11

 = ⊗ = 1, -1 ⊗ 1, -1 = 1, -1, -1, 1 =- - - - 1
2() () 1

2() - - +
2

00 01 10 11

These four vectors are linearly independent and mutually orthogonal, so they form an orthonormal
basis. We can see the mapping because forming the target vectors into a matrix (as column vectors)
gives us exactly .H⊗2

Well, this is the case of the Hadamard transform . Also note the following tensor products m = 2 H⊗m

of matrices:2 × 2

,H ⊗ I = ⊗ =1
2

1 1
1 -1

1 0
0 1

1
2

1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

.I ⊗ H = ⊗ =1 0
0 1

1
2

1 1
1 -1

1
2

1 1 0 0
1 -1 0 0
0 0 1 1
0 0 1 -1

Some examples of states you can produce with these matrices are:

 = ⊗ = 1, 1 ⊗ 1, 0 = 1, 0, 1, 0 =+0 + 0 1
2
() () 1

2
() + 00 10

2

 = ⊗ = 1, 0 ⊗ 1, 1 = 1, 1, 0, 0 =0 + 0 + 1
2
() () 1

2
() + 00 01

2

Meanwhile,

 = ⊗ = 1, 1 ⊗ 0, 1 = 0, 1, 0, 1 =+1 + 1 1
2
() () 1

2
() + 01 11

2

can be gotten as applied to the column vector . However, the state H ⊗ I 0, 1, 0, 0 = ()T 01
, which we saw in the last lecture is entangled, cannot be gotten this way. 1, 0, 0, 1 = 1

2
() + 00 11

2
Instead, it needs the help of a unitary matrix that is not a tensor product of two smaller matrices. 4 × 4
The most omnipresent one of these is:

. CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis,
the values are: , , CNOTe = CNOT = 00 00 00 CNOTe = CNOT = 01 01 01

, and . We can get these CNOTe = CNOT = 10 10 11 CNOTe = CNOT = 11 11 10
from the respective columns of the matrix, and we can label the quantum coordinates right on it:CNOT

. CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go
out to the left. If the first qubit is , then the whole gate acts as the identity. But if the first qubit is , 0 1

then the basis value of the second qubit gets flipped---the same action as the NOT gate . Hence the X

name Controlled-NOT, abbreviated : the NOT action is controlled by the first qubit. The action CNOT

on a general 2-qubit quantum state is even easier to picture:𝜙 = a, b, c, d()

 00 01 10 11
00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

.CNOT =

a
b
c
d

a
b
d
c

All it does is switch the third and fourth components---of any 4-dim. state vector. Hence, is a CNOT
permutation gate and is entirely deterministic. Permuting these two indices is exactly what we need to

transform the separable state into the entangled state . Since we got the 1, 0, 1, 01
2
() 1, 0, 0, 11

2
()

former state from applied to , the matrix we want isH ⊗ I e00

.CNOT ⋅ H ⊗ I = ⋅() 00

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = =1
2

1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

1
2

1 0 1 0
0 1 0 1
0 1 0 -1
1 0 -1 0

1
0
0
0

1
2

1
0
0
1

We can see the result coming from the first column. When we do a quantum circuit left-to-right,
however, the part comes first on the left. The symbol for a CNOT gate is to use a black dot to H ⊗ I()
represent the control on the source qubit and (which I have used as a symbol for XOR) on the target ⊕
qubit. This is more easily pictured by a quantum circuit diagram:

If , then we can tell exactly what is: it is the state. And if , then . If x = 1 0 y + x = 1 1 y = -
 is any separate qubit state , then by linearity we know that x1 a, b = a + b() 0 1

. This expresses over the transformed basis; in the standard basis it isy = a + b+ - y

. a 1, 1 + b 1, -1 = a + b, a - b 1
2
(() ()) 1

2
()

So we can say exactly what the input coming in to the first "wire" of the CNOT gate is. And the input to
the second wire is just whatever is. But because that gate does entanglement, we cannot specify x2
individual values for the wires coming out. The state is an inseparable 2-qubit state:

. + 1
2

00 11

If you measure either qubit individually, you get or with equal probability. This is the same as if you 0 1

measured the state . But that state is outwardly as well as inwardly different. When both qubits ++

to be measured, it allows and as possible outcomes, whereas measuring the entangled state 01 10
does not. I've seen papers telling ways to visualize entangled states of 2 or 3 qubits, but none
implemented by an applet so far---quantum-circuit.com just shows Bloch spheres with the black
dot at the center for the "completely mixed state": . ¯ \ _ ツ _ / ¯ ()

Three Qubits and More

The CNOT gate by itself has the logical description and . This logical z = x1 1 z = x ⊕ x2 1 2
description is valid only for standard basis states. It means that if then , but if x = 01 z = x2 2

 then . Since this description is complete for all of the standard basis inputs x = 11 z = ¬x2 2
, it extends by linearity to all quantum states. We can use this idea to x = x x = 00, 01, 10, 111 2

specify the 3-qubit Toffoli gate (Tof). It has inputs (representing the components in each x , x , x1 2 3
basis state) and symbolic outputs (which, however, might not have individual values in non-z , z , z1 2 3
basis cases owing to entanglement). Its spec in the basis quantum coordinates is:

, , . z = x1 1 z = x2 2 z = x ⊕ x ∧ x3 3 (1 2)

Of particular note is that if is fixed to be a constant- input, then x3 1

.z = ¬ x ∧ x = NAND x , x3 (1 2) (1 2)
or rather

z = x XOR x ∧ x = x XOR AND x , x3 3 (1 2) 3 (1 2)

if , then we get x = 13 1 ⊕ x ∧ x = ¬ x ∧ x = NAND x ∧ x .(1 2) (1 2) (1 2)

Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to
put and you gate two extra output wires that only compute the identity on (in x = 13 z , z1 2 x , x1 2
classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli
does is switch the 7th and 8th components of the state vectors). If you have polynomially many Toffoli
gates, then you get only polynomially much wastage of wires, and you can use the good ones to

x1

x2

x3

z1

z2

z3

 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0

simulate any polynomial-size Boolean circuit of NAND gates. Because polynomial-time algorithms can
be simulated by polynomial-sioze circuits, we have:

Theorem: .P ⊆ DQP ⊆ BQP

Well, we need to say more broadly what it means for quantum computations to be (polynomially)
feasible. The community convention is simply to count up gates of 1, 2, or 3 qubits as constant cost.
Gates involving more qubits are OK if they can be built up out of the small gates. We have already
seen that is just binary Hadamard gates laid out in parallel. The -qubit quantum Fourier H⊗n n n
transform can be built up out of smaller gates---this actually has more "fine print" than sources O n2

usually say and is pursued in the chapter exercises of the textbook.

And is to as is to . We should describe measurements in more detail and see BQP DQP BPP P

smaller-scale deterministic and randomized examples first.

Quantum Circuit Examples

Theorem (cf. theorem 5.2 in section 5.3): Classical Boolean circuits can be efficiently simulated by
quantum circuits that don't even do any superposition or entanglement.

The proof is basically that the Toffoli gate simulates NAND via and NAND is a Tof x, y, 1 = ∨ () (x⏨ y⏨)
universal gate. The extra lines for the constant 1 inputs also make the whole computation reversible.
That is, is reversible. [RevNAND) ? (no, not Tof x, y, z = x, y, z ⊕ ∨ () ((x⏨ y⏨)) x, y = x,() (∨ x⏨ y⏨
reversible)]

Here is a sizable example of this theorem. Consider the following circuit of NAND gates from the blog
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/

 Here is the corresponding quantum circuit:

Note also that the initial three gates effectively copy the Boolean values so that they can CNOT a, b, c
be negated as on the next three qubit lines. This is covered in section 6.2, and the last three , ,a⏨b⏨c⏨
qubit lines exemplify the trick in section 6.1 of using gates to effectively initialize them to NOT 1
rather than . Caveat: You can't copy an arbitrary quantum state using ---the No-Cloning 0 CNOT
Theorem mentioned in section 6.2 shows there is no way to do this in general. But particular states in
a known basis can be copied this way.

The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what
promises to take us beyond classical computing.

Circuits and Computations

Just like music can be divided into measures with a basic 'beat' unit, quantum gates going left to right
are timesteps of a computation. If multiple gates are underneath each other, then they make a single
tensor-producted operation---such as in the above diagram. If nothing happens on a certain qubit X⊗6

line at a given timestep, that is mathematically like tensoring with the identity matrix. A "squidgy" point
has to do with the nearest-neighbor aspect of tensor products. Consider:

There is notation for and , but not for " in the middle." We can ignore this I ⊗ CNOT CNOT ⊗ I I

a

b

c

0

0

0

0

0

0

X

X

X

a⏨
b⏨

c⏨

X

X

X
d

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
4--8 to , so0
that all qubits
except the last
keep their given
basis values.)

a

b

c

0

0

0

0

0

I

a

b

c

problem. Or---and often this has to be done with real tech---we can suppose the Swap gate is applied
twice, e.g.

SWAP =

 00 01 10 11
00 1 0 0 0
01 0 0 1 0
10 0 1 0 0
11 0 0 0 1

In such manner, we get the -qubit circuit as a compositionn

C = U ∘ U ∘ ⋯ ∘ Ut t-1 1

of unitary matrices.N × N

Principle of Linearity: For any quantum state ,𝛷 = a e∑
N

i=1
i i

 .C 𝛷 = a Ce() ∑
N

i=1
i i

In words, the action of a quantum circuit on any quantum state is determined by its actions on the
(standard) basis states.

General Controlled Gates

Related to the gate is the controlled version of the gate. Recall . The CNOT Z Z = 1 0
0 -1

controlled version of any matrix (in the standard basis) is the block matrix A

a

b

c

a

b

a

a

b

a ⊕ c

,CA =
 0u 1u

0u I 0
1u 0 A

where the hierarchical quantum indexing scheme is also shown. If the first qubit is 0 then the effect is
the identity, while if it is , then the effect on the remainder is to apply . So1 u A

.CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

Although the control is nominally on the first qubit, with the effect on base states is to multiply the CZ

global state by if and only if both qubits are . Hence it is really symmetric between qubits---the -1 1
second qubit could equally be said to be controlling the first. The standard diagram for it is just two
black dots connected by themselves:

Since a general vector becomes after going through , it u , u , u , u[1 2 3 4]T u , u , u , - u[1 2 3 4]T CZ

follows, upon writing and , that= a , aa [1 2]T = b , bb [1 2]T

 .CZ ⋅ ⊗ = CZ ⋅ a b , a b , a b , a b = a b , a b , a b , - a ba b [1 1 1 2 2 1 2 2]T [1 1 1 2 2 1 2 2]T

Is this ever entangled, and if so, when? Note that if and are both , then a b 1

. To CZ ⋅ ⊗ = CZ = CZ ⋅ 0, 0, 0, 1 = 0, 0, 0, -1 = - 0, 0, 0, 1 = -a b 11 []T [] [] 11

try to represent this as a tensor product , we need both and to be , ⊗ = eg, eh, fg, fhe
f

g
h

[]T e g 0

so we are left with . This is easy to solve with and , or even since we fh = -1 f = 1 h = -1 f = h = i
can use complex numbers.

But now let and both be . Then we get a b +

.CZ = CZ ⋅ 1, 1, 1, 1 = 1, 1, 1, -1++ 1
2[]T 1

2[]T

For determining entanglement we can ignore the factor. So the equations become , ,
1
2 eg = 1 eh = 1

a

b

, and . The first three combine to give , so , but that fg = 1 fh = -1 g = = h
1
e

fg = fh = 1

contradicts the fourth equation . Thus is entangled. It follows thatfh = -1 CZ ++

It is possible for a quantum gate to leave one separable state separable while making
another separable state become entangled.

Example and a Circuit Diagram Pitfall

Note: It is tempting to think that CZ should be the transform of CNOT under the change of basis. [I H⊗2

did this on the whiteboard. See the "Graph States" section of https://rjlipton.com/2022/01/05/quantum-
graph-theory/ for the end-result matrix, there called " ". I will type this up when I can.]E

https://rjlipton.com/2022/01/05/quantum-graph-theory/
https://rjlipton.com/2022/01/05/quantum-graph-theory/

