
CSE439 Fall 2024 Week 9: Shor's Algorithm
 
In general, a period of a function  is a value  such that for all , f r x
 

.f x + r  =  f x( ) ( )
 
The string  of the "promise property" in Simon's algorithm actually obeys this definition, even though it s
is a vector not a scalar.  When Peter Shor read Simon's paper, he conceptualized that the final 
Hadamard transform amplified the periodic structure in the form of peaks and troughs of waves.  The 
"trough" is how having  made the two terms in the amplitude cancel, whereas having  a • s = 1 a • s = 0
made them add with the same sign and hence concentrate the resulting probabilities on those cases.  
 
Now, ahem, converting periodic structure into peaks is really the job of the Fourier transform, not the 
Hadamard transform. And the Fourier transform does this with numeric data, not just binary-string data.  
Shor conceptualized that replacing the final Hadamard transform with the quantum Fourier transform 
(QFT) might allow a similar concentration that makes a numeric period  emerge.  And there is one r

such function and period of pre-eminent interest in cryptography...  Incidentally, the QFT on  qubits is n

just the same as the ordinary Discrete Fourier Transform (DFT) on vectors of length .  The N = 2n

circumstance that the QFT can be applied with  quantum effort---so the theory of quantum O n2

circuits tells us---is what makes the difference.
 
 
Periodic Functions
 
The important example of a periodic function is modular exponentiation:
 

.f x  =  a  Ma( ) x mod
 
Here  is a number in  that is relatively prime to .  This means that  does not a 0, 1, … , M - 1{ } M a

share a prime divisor with .  When  is the product of two different primes  and , this simply M M = pq p q

means that  is not divisible by  or by .  If  and  did share a divisor , then  would always be a a p q a M p ax

multiple of , and  is also a multiple of  because  divides  too.  So you would not get all p a Mx mod p p M

of the possible values modulo .  When  is relatively prime to , what you always get is a number M a M

relatively prime to .  This is worth spelling out more than the text does:M
 
Definition: .G  =  1  ∪  a :  1 <  a <  M and a is relatively prime to MM { } { }

 
Theorem:  forms a group under multiplication.  GM

 
A group is a set  with a distinguished element  together with an operation  that satisfies the G 1 ⦿

following axioms:

 

 



 
• For all , .g ∈ G g⦿1 =  1⦿g =  g

• For all  there is a unique  such that  and .  We write .g ∈ G h ∈ G gh = 1 hg = 1 h = g-1

 
For example, the  unitary matrices  form a group with .  Well, the numbers in modular n × n U U = U-1 *

arithmetic form groups that are simpler to understand.
 
When  is a product of two primes, the size of  is exactly .  (The general name M = pq GM p - 1 q - 1( )( )

for the size of  is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.)  The consequence of  being a group that we need is:GM

 
Corollary: For all  there is a positive integer  such that .  a ∈ GM r a ≡ 1 Mr mod

 
The least such  is exactly the period of  that we want to find.  It always divides , so when r f xa( ) |G |M

 we get that  divides .  You might think this should narrow down the possibilities, M = pq r p - 1 q - 1( )( )
but:
 

• We don't actually get the value  factored for us---we don't even know  m = p - 1 q - 1( )( ) m

because we don't know how to factor  to begin with.M =:  pq

• Compared to the number  of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than  we might have to check is exponential in .m n

• By the way, the number  in  can be exponential in , so it looks like it takes too long to x ax n

compute  to begin with.  However, by iterated squaring modulo  we can compute the f xa( ) M

following values in  time: , , nO 2 a  =  a M1
2 mod a  =  a  M =  a M2

2
2 mod 4 mod

, , and so on up to a  =  a M =  a M3
2
2 mod 8 mod a  =  a M =  a M4

2
3 mod 16 mod

.  Then we need only multiply together those  such that a  =  a M =  a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes .  This needs only  multiplications and mod-  reductions of x 2i 2n M

-bit numbers, so it is doable in   time using an  -time integer multiplication n nO 2 nO( )

algorithm.  (Or we can say  time using the simple multiplication algorithm.  The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card 
needed a chip.) 

 
Nevertheless, if we do find the period ---for a "good" value  which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find  and  by classical efficient means.  p q
 
Theorem: There is a classical randomized algorithm that, when provided a function oracle 

 some integer multiple of the period of , finds a factor of  in expected g M, a  =( ) f Ma mod M

polynomial time.   That is, Factoring is in .  BPPg

 

 

 



The proof is the entire content of Chapter 12.  Lipton and I bundled this up into a separate chapter so 
that instructors would have the freedom to skip it, as we'll do for the time being.  (2024: It will be in a 
replacement lecture done online via Zoom.)  So we can focus on the task of finding  (or at least a r

multiple of ) via quantum means.r
 
Shor's Theorem: Factoring is in .BQP

 
 
Steps of Shor's Algorithm
 

1. Given , use classical randomness to guess a number  between  and .M a 2 M - 1

2. Use Euclid's algorithm to find .  If it gives a number , then "ka-ching!"---we got a, Mgcd( ) c >  1

a divisor of .  Since both  and  are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important  case, this had a, M = 1gcd( ) a ∈  GM M = pq

probability  and so was pretty likely anyway.  By the way, Euclid's algorithm also gives 
p-1 q-1

pq

( )( )

you a number  such that .  But it doesn't give you this  as a power of  (to wit, b ab = 1 Mmod b a

as ), which is what you'd need to get .  b = a Mr-1 mod r

4. To give some slack, we choose a number  and expand the domain of  to Q = 2  ≈  Mℓ 2 f xa( )

include  in the interval up to , not just up to .  The range is still  to . So our x Q - 1 M - 1 1 M - 1

domain is  in the range 0 to , which uses  bits.   This gives us quadratically many x 2 - 1ℓ ℓ ≈  2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.  

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum q

implementation of the  classical gates needed to compute modular exponentiation.  This nO 1( )

produces the functionally superposed quantum state

.𝛷  =   f
1

N
∑

 

x∈ 0,1{ }ℓ

xf xa( )

6. Apply the QFT (or its inverse) to the first  qubits.  ℓ

7. Then measure the whole result.  Curiously, we ignore what happens in the " " portion of the f xa( )

circuit.  The fact that those final  qubits were entangled with the first  qubits is enough.  So we n ℓ

let our output  in the " -space" be the first  bits of the measured result over the binary w x ℓ
standard basis.

 
My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for  M = 21 = 3*7

(where I guessed ), which gave  since  is the next power of  after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

 

 



 
But there isn't any more to the quantum circuitry than that.  It's all simply: compute a giant functional 
superposition and apply QFT (or its inverse) to it.
 
The analysis establishes that with pretty good probability already in one shot, the output  reveals the y

period  by a followup classical means.  And with initial good probability over the choice of , the r a

resulting value  unlocks the key to factoring .  We will focus on understanding why the measured  r M y

has much to do with the period  to begin with.  Then basic point---which has been known for centuries--r
-is that the Fourier transform converts periodic data to peaked data.  Here is how the simple quantum 
circuit above applies this fact.
 
 
The Intuition (See also Scott Aaronson, https://www.scottaaronson.com/blog/?p=208)
 
Let  stand for the true period of .  Let  be any element of the group  of size .  Then r f a GM p - 1 q - 1( )( )

we will picture  as a "crazy clock" that jumps  units counter-clockwise at each time step.  a a
 

 

 

https://www.scottaaronson.com/blog/?p=208


 
With fairly high probability, measurement---followed by figuring needed to get the guessed  from the ri
measurement---yields a multiple of .  The true  is the least of the multiples.  It is individually the most r r

likely value returned and is also returned with reasonable probability.  A non-least  might work anwyay.  r

We can tell whether  works by seeing if the classical part gives us  or , else we just try the quantum r p q
process again.  
 
Heading into the analysis, however, we need to say exactly what the measured string  actually w

represents.  In general, the angle  represented by  (when we actually use the complex plane to 𝛼 a
model the "crazy clock") will not be a whole-number fraction of the circle.  But let us first suppose it is.  
Then the smallest period  (i.e., the true period) will go exactly once around the circle and back to angle r

 as represented by .  So suppose  is a correct guess of .  Then with high probability, the output  𝛼 a ri r w

of the measurement has the same angle .  Since angles add when we multiply complex numbers, this 𝛼

means  takes us once around the circle.  This in turn means that  is the reciprocal of  with regard r𝛼 𝛼 r

to the circle.  So  would be close to this reciprocal.w

 
In the general case, we have to go some number  times around the circle before we get exactly back t

to .  That is, we have  with respect to the circle.  So  times whatever number  represents a r𝛼 = t 𝛼 =
t

r
Q

the extent of once-around-the-circle in the units we are using.  This finally means that  should be w

close to  in these units.  The  needs to be close enough to pull one final switcharoo: We don't know tQ

r
w

what  is either, but from  we get .  Since  has to be an integer, we just need to find a  t w ≈
tQ

r
r ≈  t

Q

w
r t

that multiply the fraction  into being real close to an integer.  It turns out this will work when the Q

w

additive error in the measured  relative to the "true amplifying direction"  is at most  in the w
tQ

r
±0.5

circle's units.  Choosing  high enough makes those units fine enough for this to work.  The "analysis Q
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C
K Each "guess" ri

"independently"
iterates the code:
Sleep  timestepsri

so .t :=  t + ri

Move one unit in
the current 
direction .  𝛼t

The guesses that are
close to a multiple of
the correct  get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈  M2

discrimination of the true .r



of the quantum part" tells how often the measured  is close enough to be "good."  (As was the case w

with Simon's algorithm, the text re-uses the letter " " to denote the particular string from the " -space" x x
that was obtained in the measurement.)
 
 
Simulation Interlude
 
Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm.  It pretty much 
builds the concrete "mazes" for  qubits and simulates all the legal "Feynman mouse paths" ℓ + n

through them.  The run of my simulator on  and  succeeded on the second try:M = 21 a = 5

The detailed analysis from chapter 11 (continuing into chapter 12) will come in week 10.  

 

 




