Three forms of δ for a DFSA

$\delta: Q \times \Sigma \rightarrow Q$ defined schematically by $\delta(q, c) = r$

1. State δ_0 (State q, char c)
2. State δ_1 (State q, char c)
3. Set $\langle \text{Triple} \langle \text{State}, \text{char State} \rangle \rangle \rangle \delta$

The FA is deterministic (a DFA) if form 3 defines a function, i.e., if $(\forall q \in Q)(\forall c \in \Σ)(\exists! r \in Q):(q, c, r) \in \delta$.

Otherwise, the FA is non-deterministic (an NFA).

Informal Def: An NFA N has non-determinism at state q on char c if there are r_1, r_2 such that

$(q, c, r_1) \in \delta \land (q, c, r_2) \in \delta$

One more wrinkle: We can let NFAs have arcs on ϵ, i.e.,

$Q \rightarrow \epsilon$