
CSE491/596 Final Exam Dec. 17, 2021

Open book, open notes, closed neighbors, 170 minutes. The exam has six problems and totals
240 pts., subdivided as shown. Problem (6) involves a choice: (6a) XOR (6b). Show your
work—this may help for partial credit.

Notation: As always E = DTIME[2O(n)], while EXP = DTIME[2nO(1)
] and NEXP =

NTIME[2nO(1)
], and the names of other complexity classes are either completely standard or

explained in the questions themselves. The alphabet Σ over which languages are encoded is
immaterial; you are always welcome to consider Σ = { 0, 1 } or Σ = { 0, 1,# }. The alphabet Γ
used as the worktape alphabet of Turing machines may, however, be much larger. The tupling
notation 〈x, y〉 or 〈x, y, z〉 may be considered either as giving the strings x#y and x#y#z or
as the application of pairing functions. The choice of tupling scheme is not intended to matter,
and any language using 〈·, ·〉 notation may be assumed nonregular unless it is ∅ or Σ∗.

You may cite any major relevant theorem or fact or definition covered in the course without
needing to give a justification (unless one is specifically asked for). The following diagram
conveys “current knowledge” in complexity theory and is referenced by problems (1) and (3):

(1) (12 × 5 = 60 pts.)

Classify each of the following languages L1, . . . , L12 according to the classification on the next
page. Please write your answers in this form: if L13 were the language of the Halting Problem,
you could write “13. i” or “13. (i)”—but even better, add the words “c.e. but undecidable” to
guard against silly errors. The classes and languages are on the next page. No justifications
are needed , but may help for partial credit. There is a unique best answer for each language,
and some answer(s) may be unused. Unless specified as a DFA, “M” or “M1” etc. refers to a
deterministic Turing machine, “C” to a Boolean circuit, and “G” to an undirected graph.

(a) regular;

(b) in deterministic logspace but not regular;

(c) in NL and not known to be—or believed not to be—in deterministic logspace;

(d) in P and not known to be—or believed not to be—in NL;

(e) in NP and strongly believed not to belong to co-NP;

(f) in co-NP and strongly believed not to belong to NP;

(g) in PSPACE and strongly believed not to belong to NP nor to co-NP;

(h) decidable but known to be not in PSPACE;

(i) c.e. but not decidable;

(j) not c.e.

The languages are:

1. L1 = { 〈M, 0r〉 : M does not accept 〈M, 0r〉, r ≥ 0 }.

2. L2 = { 〈M, 0r〉 : M does not accept 〈M, 0r〉 using only 2r of its own tape cells }.

3. L3 = { 〈C, x〉 : n = |x| ∧ C is a Boolean circuit with n inputs ∧ C(x) = C(0n) }.

4. L4 = { 〈C, x〉 : n = |x| ∧ C is a Boolean circuit with n inputs ∧ (∃y)C(x) = C(y) }.

5. L5 = {M : M is a DFA that accepts the string 0n1n where M has n states}.

6. L6 = {M : M is a DFA that has no path from any final state back to its start state}.

7. L7 = { 0m1n : m + n = 6 }.

8. L8 = { 0m1n : m− n = 6 }.

9. L9 = { 〈G〉 : G is not 3-colorable }.

10. L10 = {〈M1,M2〉 : L(M1) ∪ L(M2) 6= ∅}.

11. L11 = {〈M1,M2〉 : L(M1) ∪ L(M2) = Σ∗}.

12. L12 = {M#u : M is a DFA that accepts some string beginning with the prefix string u}.

(2) (36 pts. total)

(a) Define A = 1√
2

[
1 −1
1 1

]
. Show that A is unitary.

(b) Now calculate B = A2. Then write controlled-B =

[
I 0
0 B

]
as a 4× 4 matrix.

(c) Now consider the following quantum circuit:

|0〉 A • ?

|0〉 B ?

Here the second gate is controlled-B. Calculate the output of the circuit (on input |00〉
as shown) and say whether the resulting two-qubit quantum state is entangled.

(3) (36 pts.)

Consider the following decision problem “Arrows”:

Instance: An undirected graph G = (V,E) in which some edges are called “heavy.”

Question: Can each edge be given an arrow so that:

� In a heavy edge (u, v), if its arrow points at v then all other edges involving v have arrows
pointing out of v and all other edges involving u have arrows pointing into u.

� In a heavy edge (u, v), if its arrow points at u then all other edges involving u have arrows
pointing out of u and all other edges involving v have arrows pointing into v.

� All (other) nodes have at least one arrow pointing in to them.

For instance, if the orange edges in the bowtie graph on the front page are “heavy,” then the
answer is an easy “yes” no matter how you orient the arrows on the heavy edges: the other node
will always have two arrows in and two arrows out. (Well, that node is like the doubly-trivial
4CNF clause (x1 ∨ x̄1 ∨ x2 ∨ x̄2)—this is an oblique hint to get you started.)

(a) Show that the problem is NP-complete. For hardness, you must use a mapping reduction
from 3SAT. (36 pts.)

(b) For optional offsetting credit (not extra credit), say what happens if we simplify the
problem so that there is no “heavy edge” distinction and the Question is simply this:

� Can each edge be given an arrow so that each node has either exactly one arrow
coming in or exactly one arrow going out?

Can you show this simpler problem to be NP-hard using a variant form of (3)SAT? Does
the proof of correctness really work? (Note that the bowtie graph, now with no orange
edges, becomes an instance where the answer is no.)

(4) (36 pts.) True-False with reasons .

Please write out the words true and false in full, for 3 points, and for the other 3 points,
write a relevant justification (need not be a full proof, and should be brief).

(a) RE has a complete language under polynomial-time many-one reductions.

(b) On current knowledge, NSPACE[O(n)] is a proper subclass of DSPACE[n4].

(c) On current knowledge, NSPACE[O(n)] is a proper subclass of P.

(d) The difference of two regular languages is always regular.

(e) The language TQBF is hard for NP under logspace many-one reductions.

(f) If BQP = NL then P = NL.

(5) (42 pts. total)

One of these two languages L is regular; the other is not. For the non-regular one, give
a proof via the Myhill-Nerode Theorem. For the regular one, design a DFA M such that
L(M) = L · (01)∗.

L1 = {x0y : #0(x) > #0(y) }
L2 = {x1y : #0(x) > #0(y) }

(6) (30 pts.) Do Exactly One of the following two problems.

(6a) Give in pseudocode a polynomial-time decision procedure for the following problem:

Instance: Three DFAs MA,MB,MC , each with the same number n of states.

Question: Is L(MA) ⊆ L(MB) ⊆ L(MC)?

Your pseudocode must be detailed enough to estimate the running time of your procedure as
Õ(nk) for some constant k, where the tilde means you may ignore factors of log n. You need
not optimize k, but it must be clear from your algorithm.

XOR

(6b) Define B = { 〈M〉 : M does not accept any palindrome }. Show by reduction from DTM

that B is not c.e. (If you wish, you may work with the complements of B and DTM in your
reduction instead.) Also answer and briefly justify : is B co-c.e.?

End of Exam.

