Lectures and Reading. This week will complete the cycle of showing that the formalism of DFAs, NFAs, and regular expressions all recognize the same class of languages. The class is standardly denoted by REG for the class of regular languages. Then lectures will move into the Myhill-Nerode technique for showing that certain other languages are non-regular and for showing that certain sets of strings must all be processed to distinguished states by a DFA. So read Debray’s notes up through the end of section 3 on page 11, in tandem with the slides notes called “Extra notes for Weeks 2–3” on the course webpage. Then also read the “Myhill-Nerode” handout on the course webpage (which was also originally used in CSE396).

The assignment will be by online submission using CSE Autograder. I will revise this with submission details.

(1) Let positive natural numbers be written in standard binary notation but with the leading ‘1’ removed: ϵ stands for 1, 0 for 10 = 2, 1 for 11 = 3, 00 for 100 = 4, and so on. This gives a 1-to-1 correspondence between $\{0, 1\}^*$ and \mathbb{N}^+. Under this correspondence, design a deterministic finite automaton M_6 that recognizes the language L_6 of strings denoting integers that are 1 less than a multiple of 6:

$$L_6 = \{01, 011, 0001, \ldots\}$$

standing for $$\{5, 11, 17, \ldots\}.$$ You may design M_6 directly or as a combination of smaller machines, but especially in the former case, you should provide “code comments” explaining the meaning and functions of the states and showing why $L(M_6) = L_6$. (Note typo fix from earlier version that added ϵ to L_6, which you could handle with an extra state but it’s cleaner not to have it. 24 pts. total)

(2) Design both nondeterministic finite automata N_a, N_b, N_c and regular expressions r_a, r_b, r_c that denote the following three languages described in prose. (It is OK for your NFAs to have ϵ-arcs, and it is fine if one or more are DFAs since a DFA “Is-A” NFA.) All use the alphabet $\Sigma = \{0, 1\}$. (3 × (6 + 6) = 36 points total)

(a) L_a = the set of binary strings ending in 011 or 110.

(b) L_b = the set of binary strings that have both a 010 and a 101 in them somewhere.

(c) L_c = the set of binary strings having no occurrence of the substring 11 and at most one occurrence of 00.

(3) Convert the following NFA N into an equivalent DFA M:
(a) Is there a string u that N can process from its start state to each and every one of its four states? Viewing your DFA M, give a shortest u if so.

(b) Is there a string v that N cannot process from start to any state? Again give a shortest such v.

(c) Is there a string w such that no matter what string y follows it, the string wy is accepted? Again use your M.

(d) Stronger than (b) and counter to (c), is there a string z that N cannot process at all, not from any of its states p to any state q? Again use your M to explain your answer.