
CSE491/596, Fall 2021 Problem Set 4 Due Wed. Nov. 10

The Second Prelim Exam will be on Wednesday, Dec. 1, in class period. That is, it
will be after Thanksgiving. There will also be a homework due on Monday, Nov. 22, that is,
the Monday before Thanksgiving.

Lectures and Reading: Friday’s lecture will finish section 4.4 of ALR chapter 28, and hence
finish the topic of NP-completeness. Starting on Monday 11/8, we will give full treatment
to space complexity and its relation to time complexity before handling the completeness
results in section 5 of that chapter in the third week of November. There is a “hole” in both
ALR chapter 27 and in Debray’s notes, where ALR states Theorem 2.3 (in the short “Basic
Relationships” section 2.4) without giving proofs, while Debray sketches the proof tersely
at the top of page 56 (near the end of section 17) but does not make a separate theorem
statement. The hole is filled by page 1 of the following handout, which is linked from the
course webpage as item 6 of required reading (ignore the dates from Fall 2018 in the first line):

https://cse.buffalo.edu/~regan/cse491596/CSE596inclusions.pdf

The remaining pages 2–4 of this handout are heavy going but they tie together material
that is heavy going in Debray’s notes (split between Theorems 13.7–13.8 and Theorem 18.1)
and ALR chapter 27, Theorem 2.5 in section 2.6 (where, however, the proof of the hierarchy
theorem for deterministic time is not given, and you should skim/skip the NTIME proof).
Thus the reading for next week becomes:

� The rest of Debray, sections 13–18, except we are still postponing the discussion of
oracles in the first two pages of section 17, and the TQBF proof will be covered the
following week when we rejoin ALR chapter 28 in section 5.

� ALR chapter 27, sections 2.4–2.7.

The reading for the week after next—that is, for the week before Thanksgiving, will be
ALR chapter 28 in section 5 in-tandem with the rest of Debray’s notes.

———- Assignment 4, due Nov. 10 “midnight stretchy” on CSE Autograder ———-

(1) For any language L, define Halves(L) to be the language of prefixes w of strings x ∈ L
s.t. w includes at least the first half of x. (In symbols, w v x means w is a prefix of x. The
other requirement is |w| ≥ |x|/2 for some x ∈ L.) Also define Prefs(L) to be the set of all
prefixes of strings in L, i.e. without the “|w| ≥ |x|/2” restriction.

(a) Prove that if L belongs to P, then Halves(L) belongs to NP.

(b) Prove however that when L is a suitable encoding of the valid-computation checking
predicate (the “Kleene T predicate”) then the language Prefs(L) is undecidable, even
though L belongs not only to P but even to deterministic linear time.

(c) Also answer: Is Prefs(L) always c.e. when L is c.e.? (6 + 12 + 6 = 24 pts.)



(2) Now define the following language S, which belongs to the class P:

S = {〈φ〉@na〈φ〉 : φ is a 3CNF formula in n variables, a ∈ {0, 1}n, and φ(a) = true}.

The reason this does not put angle brackets around the whole input is that while we do
not care exactly how the formula is encoded, we do care about the encoding detail that the
candidate assignment a to the variables as a simple binary string comes before a second copy
of the formula. Plus we stuck a string of n @-signs before the assignment—why did we do
that? The reason is that if x = 〈φ〉@na〈φ〉, then w = 〈φ〉@n is exactly the first half of x. This
sets up the way Halves(L) is defined in problem (1).

The reason why S is in P is that we can quickly check that φ has the stated number n
of variables and then evaluate φ on the given assignment a. But what about testing whether
a given string of the form w = 〈φ〉@n belongs to Halves(S)? Show that Halves(S) is NP-
complete.

Also show that if we really had a polynomial-time Turing machine M such that L(M) =
Halves(S), then given any formula φ, we could use M repeatedly to find a satisfying assign-
ment whenever one exists. (The basic idea, often called “reducing search to decision,” was
also used in the 10/28 lecture example showing how deciding the language “FACT” enables
one to find a factor. 9 + 9 = 18 pts.)

(3) Given a graph G = (V,E) that includes a triangle of edges (u, v), (u,w), (v, w), say
that a node t “abuts the triangle” if t borders one of its nodes—that is, if (t, u), (t, v), or
(t, w) also is an edge in E. Show by reduction from 3SAT that the following decision problem
is NP-complete. (24 pts.)

Instance: An undirected graph G = (V,E) and an integer k ≥ 1.

Question: Is there a subset S of at most k nodes that abuts every triangle in G?

(4) Suppose a university degree has m requirements R1, . . . , Rm, such that each Rj can
be satisfied by any one of a set Sj of courses. The sets Sj may overlap—that is, one course
might satisfy multiple requirements (like being both a CSE breadth course and a pre-req. for
a depth course you want to take). Show by reduction from 3SAT that the following problem
is NP-complete:

Instance: A list of sets Sj of courses, so that any member of Sj satisfies a corresponding
requirement Rj, and a number k ≥ 0.

Question: Is there a way to take just k courses so that all requirements are satisfied?

Show that this problem (in general, apart from real universities) is NP-complete. (Hint: you
can do this when each requirement Rj has just two courses that can satisfy it, so Rj is like an
edge in a graph whose nodes are the courses. 24 pts., for 90 total on the set)


