\qquad
CSE491/596, Fall 2021 First Prelim Exam
Oct. 13, 2021

Open book, open notes, closed neighbors, 48 minutes. The exam totals $\mathbf{8 0}$ pts., subdivided as shown. Show all work - this may help for partial credit. Please do the problems on these exam sheets.

All notation is standard as in course readings and lectures; in particular, the reversal of string x is written x^{R}, with examples $011^{R}=110, \epsilon^{R}=\epsilon$, and $x=x^{R}$ means x is a palindrome. the difference of two sets B and A is written $B \backslash A$; it also equals $B \cap \tilde{A}$ where \tilde{A} stands for the complement of A.

(1) (24 pts.)

Over $\Sigma=\{0,1\}$, define L to be the language of strings that have more occurrences of the substring 010 than occurrences of the substring 101. Prove using the Myhill-Nerode technique that L is not a regular language. (Note that occurrences of the substrings can overlap-but you can take that worry out of the picture by judicious choices of S and/or z.)
(2) $(9+15+6+2=32$ pts. $)$

Consider the regular expression $r=(a a+b a)^{*}(a b+b b)^{*}$ over the alphabet $\Sigma=\{a, b\}$.
(a) Design an NFA N with 4 states such that $L(N)=L(r)$.
(b) Design a DFA M such that $L(M)=L(r)$. You may either convert your NFA N from part (a) or design M by understanding r directly, but in the latter case you must have comments that explain the strategy. In particular, you must have at least one comment saying when the $(a b+b b)^{*}$ part comes into play.
(c) Does there exist a "kill string" u such that for all $z \in \Sigma^{*}, u z \notin L(r)$? Give a shortest such string if so.
(d) Convert your N into a 2-state generalized NFA G such that $L(G)=L(N)$. You need not follow the algorithm but can "just do it" -and this is worth 2 points mainly because 80 is congruent to 2 modulo 3 .
(Space for Problem (2), continued...the last problem is overleaf)
(3) (24 pts. total) True/False with justifications: each question is 3 pts. for correct answer and 3 for an explanation (or definitive example or counterexample) in one or two sentences.
(a) If x is any string in the language $L(r)$ in problem (2), then its reversal x^{R} is also in $L(r)$.
(b) Every undecidable language is non-regular.
(c) If B is undecidable and A is decidable, then $B \backslash A$ must be undecidable.
(d) If B is non-regular and A is regular, and if $A \subset B$, then $B \backslash A$ must be non-regular.

