(1) Let L_{3} be the language of binary strings that represent positive multiples of 3. Define L to be the language of binary strings that do not have a substring in L_{3}. That is, L is the complement of $(0+1)^{*} \cdot L_{3} \cdot(0+1)^{*}$. Follow these steps to characterize the language L.
(a) Design a DFA M_{3} such that $L(M)=L_{3}$. It is possible that you might find this just in the course of innocently reading online notes, and that's OK, actually. (Just 3 pts.)
(b) Now make some small additions to your DFA M_{3} to create an NFA N_{3} such that $L\left(N_{3}\right)=$ $(0+1)^{*} \cdot L_{3} \cdot(0+1)^{*}$. (3 pts.)
(c) Convert N_{3} into an equivalent DFA M^{\prime} such that $L\left(M^{\prime}\right)=(0+1)^{*} \cdot L_{3} \cdot(0+1)^{*}$. (12 pts.)
(d) Complement the final states of M^{\prime} to get the needed M. (3 pts.)
(e) The string 11 sends M to a dead state wherever you start from because it is 3 in binary, so it makes a substring that belongs to L_{3}. Find a similar "dead substring" that does not have two consecutive 1 s in it. (3 pts ., for 24 total)
(2) Design both nondeterministic finite automata N_{a}, N_{b}, N_{c} and regular expressions r_{a}, r_{b}, r_{c} that denote the following three languages described in prose. (It is OK for your NFAs to have ϵ-arcs, and it is fine if one or more are DFAs since a DFA "Is-A" NFA.) All use the alphabet $\Sigma=\{0,1\}$. $(3 \times(6+6)=36$ points total $)$
(a) $L_{a}=$ the set of binary strings in which the substring 10 occurs an odd number of times.
(b) $L_{b}=$ the set of binary strings of the form $x=y 00 z$ where $|z|$ is odd.
(c) $L_{c}=$ the set of binary strings having an occurrence of the substring 10 that do not have an occurrence of 11 after it.
(3) Convert the folowing NFA N into an equivalent DFA M (18 pts.):

Also answer (for $3 \times 3=9$ more pts., making 87 total on the set):
(a) Is there a string v that N cannot process from start to any state? Again give a shortest such v.
(b) Is there a string w such that no matter what string y follows it, the string $w y$ is accepted? Again use your M.
(c) Stronger than (a) and counter to (b), is there a string z that N cannot process at all, not from any of its states p to any state q ? Again use your M to explain your answer.

