(1) Let L_3 be the language of binary strings that represent *positive* multiples of 3. Define *L* to be the language of binary strings that *do not* have a substring in L_3 . That is, *L* is the complement of $(0 + 1)^* \cdot L_3 \cdot (0 + 1)^*$. Follow these steps to characterize the language *L*.

- (a) Design a DFA M_3 such that $L(M) = L_3$. It is possible that you might find this just in the course of innocently reading online notes, and that's OK, actually. (Just 3 pts.)
- (b) Now make some small additions to your DFA M_3 to create an NFA N_3 such that $L(N_3) = (0+1)^* \cdot L_3 \cdot (0+1)^*$. (3 pts.)
- (c) Convert N_3 into an equivalent DFA M' such that $L(M') = (0 + 1)^* \cdot L_3 \cdot (0 + 1)^*$. (12 pts.)
- (d) Complement the final states of M' to get the needed M. (3 pts.)
- (e) The string 11 sends *M* to a dead state wherever you start from because it is 3 in binary, so it makes a substring that belongs to *L*₃. Find a similar "dead substring" that does not have two consecutive 1s in it. (3 pts., for 24 total)

(2) Design both nondeterministic finite automata N_a , N_b , N_c and regular expressions r_a , r_b , r_c that denote the following three languages described in prose. (It is OK for your NFAs to have ϵ -arcs, and it is fine if one or more are DFAs since a DFA "Is-A" NFA.) All use the alphabet $\Sigma = \{0, 1\}$. (3 × (6 + 6) = 36 points total)

- (a) L_a = the set of binary strings in which the substring 10 occurs an odd number of times.
- (b) L_b = the set of binary strings of the form x = y00z where |z| is odd.
- (c) L_c = the set of binary strings having an occurrence of the substring 10 that do not have an occurrence of 11 after it.
- (3) Convert the following NFA N into an equivalent DFA M (18 pts.):

Also answer (for $3 \times 3 = 9$ more pts., making 87 total on the set):

- (a) Is there a string *v* that *N* cannot process from start to any state? Again give a shortest such *v*.
- (b) Is there a string *w* such that no matter what string *y* follows it, the string *wy* is accepted? Again use your *M*.
- (c) Stronger than (a) and counter to (b), is there a string *z* that *N* cannot process at all, not from any of its states *p* to any state *q*? Again use your *M* to explain your answer.